Agrawal, A. (1995). Dismantling the Divide Between Indigenous and Scientific Knowledge. Development and Change, 26(3), 413–439. https://doi.org/10.1111/j.1467-7660.1995.tb00560.x
Ahamer, J., & Lechleitner, G. (Hrsg.). (2007). Um-Feld-Forschung: Erfahrungen, Erlebnisse, Ergebnisse. OAW.
Ahishakiye, E., Van Gijzen, M. B., Tumwiine, J., Wario, R., & Obungoloch, J. (2021). A survey on deep learning in medical image reconstruction. Intelligent Medicine, 1(3), 118–127. https://doi.org/10.1016/j.imed.2021.03.003
Ahmed, S. (2004). The cultural politics of emotion (Second edition). Edinburgh University Press.
Ajoudani, A., Zanchettin, A. M., Ivaldi, S., Albu-Schäffer, A., Kosuge, K., & Khatib, O. (2018). Progress and prospects of the human–robot collaboration. Autonomous Robots, 42(5), 957–975. https://doi.org/10.1007/s10514-017-9677-2
al-Haytham, I., & Smith, A. M. (2006). Alhacen on the Principles of Reflection: A Critical Edition, with English Translation and Commentary, of Books 4 and 5 of Alhacen’s „De Aspectibus“, the Medieval Latin Version of Ibn al-Haytham’s „Kitāb al-Manāẓir“. Volume Two: English Translation. Transactions of the American Philosophical Society, 96(3), 289. https://doi.org/10.2307/20020403
Annette Arlander. (2023). Explorations with an Ash Tree. https://doi.org/10.22501/hub.2137521
Arlander, A. (2020, März 4). Tree Performance with a Henkel‘s Yellowood [An international database for artistic research]. Research Catalogue. https://www.researchcatalogue.net/profile/show-work?work=815793
Arthur, W. B., Durlauf, S. N., & Lane, D. A. (Hrsg.). (1997). The economy as an evolving complex system. 2 / eds. W. Brian Arthur (1. print). Addison-Wesley.
Baars, B. J. (1988). A Cognitive Theory of Consciousness. Cambridge University Press.
Bail, C. A., Argyle, L. P., Brown, T. W., Bumpus, J. P., Chen, H., Hunzaker, M. B. F., Lee, J., Mann, M., Merhout, F., & Volfovsky, A. (2018). Exposure to opposing views on social media can increase political polarization. Proceedings of the National Academy of Sciences, 115(37), 9216–9221. https://doi.org/10.1073/pnas.1804840115
Bailenson, J. (2018). Experience on demand: What virtual reality is, how it works, and what it can do. W.W. Norton & Company.
Bailey, K. D. (1990). Social entropy theory. State University of New York Press.
Bakshy, E., Messing, S., & Adamic, L. A. (2015). Exposure to ideologically diverse news and opinion on Facebook. Science, 348(6239), 1130–1132. https://doi.org/10.1126/science.aaa1160
Balconi, M., & Vanutelli, M. E. (2017). Interbrains cooperation: Hyperscanning and self-perception in joint actions. Journal of Clinical and Experimental Neuropsychology, 39(6), 607–620. https://doi.org/10.1080/13803395.2016.1253666
Barsalou, L. W. (2008). Grounded Cognition. Annual Review of Psychology, 59(1), 617–645. https://doi.org/10.1146/annurev.psych.59.103006.093639
Bartlett, F. C. (1995). Remembering: A study in experimental and social psychology. Cambridge University Press.
Bar-Yam, Y. (1997). Dynamics of complex systems (Nachdr.). Perseus Books.
Bastos, A. M., Vezoli, J., Bosman, C. A., Schoffelen, J.-M., Oostenveld, R., Dowdall, J. R., De Weerd, P., Kennedy, H., & Fries, P. (2015). Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels. Neuron, 85(2), 390–401. https://doi.org/10.1016/j.neuron.2014.12.018
Baum, S. (2016). On the Promotion of Safe and Socially Beneficial Artificial Intelligence (SSRN Scholarly Paper 2816323). https://doi.org/10.2139/ssrn.2816323
Bedau, M. A. (1997). Weak Emergence. Noûs, 31(s11), 375–399. https://doi.org/10.1111/0029-4624.31.s11.17
Bedau, M. A., & Humphreys, P. (Hrsg.). (2008). Emergence: Contemporary Readings in Philosophy and Science. The MIT Press. https://doi.org/10.7551/mitpress/9780262026215.001.0001
Beer, R. D. (1995). A dynamical systems perspective on agent-environment interaction. Artificial Intelligence, 72(1), 173–215. https://doi.org/10.1016/0004-3702(94)00005-L
Belfiore, E., & Bennett, O. (2007). RETHINKING THE SOCIAL IMPACTS OF THE ARTS. International Journal of Cultural Policy, 13(2), 135–151. https://doi.org/10.1080/10286630701342741
Berger, P. L. (1967). The sacred canopy: Elements of a sociological theory of religion. Anchor Books.
Berger, P. L., Luckmann, T., & Berger, P. L. (1977). Die gesellschaftliche Konstruktion der Wirklichkeit: Eine Theorie der Wissenssoziologie (5. Aufl). S. Fischer.
Beuys, J. (2002). Sprechen über Deutschland: Rede vom 20. November 1985 in den Münchner Kammerspielen. FIU-Verl.
Billinghurst, M., Clark, A., & Lee, G. (2015). A Survey of Augmented Reality. Foundations and Trends® in Human–Computer Interaction, 8(2–3), 73–272. https://doi.org/10.1561/1100000049
Bishop, C. (2012). Artificial hells: Participatory art and the politics of spectatorship. Verso Books.
Blasius, B., Huppert, A., & Stone, L. (1999). Complex dynamics and phase synchronization in spatially extended ecological systems. Nature, 399(6734), 354–359. https://doi.org/10.1038/20676
Blumer, H. (1969). Symbolic interactionism: Perspective and method. Prentice-Hall.
Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., & Zhou, C. S. (2002). The synchronization of chaotic systems. Physics Reports, 366(1), 1–101. https://doi.org/10.1016/S0370-1573(02)00137-0
Boden, M. A. (2004). The creative mind: Myths and mechanisms (2nd ed). Routledge.
Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press. https://doi.org/10.1093/oso/9780195131581.001.0001
Bonney, R., Shirk, J. L., Phillips, T. B., Wiggins, A., Ballard, H. L., Miller-Rushing, A. J., & Parrish, J. K. (2014). Next Steps for Citizen Science. Science, 343(6178), 1436–1437. https://doi.org/10.1126/science.1251554
Boorstin, D. J. (1962). The image: A guide to pseudo-events in America (Reprint). Vintage books.
Born, G., & Barry, A. (2010). ART-SCIENCE: From public understanding to public experiment. Journal of Cultural Economy, 3(1), 103–119. https://doi.org/10.1080/17530351003617610
Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies (First edition). Oxford University Press.
Botsman, R., & Rogers, R. (2010). What’s Mine Is Yours: The Rise of Collaborative Consumption. Harper Collins.
Bowen, M. (1978). Family therapy in clinical practice. J. Aronson.
Brillouin, L. (1953). The Negentropy Principle of Information. Journal of Applied Physics, 24(9), 1152–1163. https://doi.org/10.1063/1.1721463
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., … Amodei, D. (2020). Language Models are Few-Shot Learners (Version 4). arXiv. https://doi.org/10.48550/ARXIV.2005.14165
Bruin, L. de, Newen, A., & Gallagher, S. (Hrsg.). (2018). The Oxford Handbook of 4E Cognition. Oxford University Press.
Bruner, J. (1991). The Narrative Construction of Reality. Critical Inquiry, 18(1), 1–21. https://doi.org/10.1086/448619
Brynjolfsson, E., & McAfee, A. (2016). The second machine age: Work, progress, and prosperity in a time of brilliant technologies (First published as a Norton paperback). W. W. Norton & Company.
Bryson, J. J. (2020). The Artificial Intelligence of the Ethics of Artificial Intelligence: An Introductory Overview for Law and Regulation. In M. D. Dubber, F. Pasquale, & S. Das (Hrsg.), The Oxford Handbook of Ethics of AI (S. 1–25). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780190067397.013.1
Bucher, T. (2018). If…Then (Bd. 1). Oxford University Press. https://doi.org/10.1093/oso/9780190493028.001.0001
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198. https://doi.org/10.1038/nrn2575
Bunge, M. (2004). Emergence and Convergence: Qualitative Novelty and the Unity of Knowledge. University of Toronto Press. https://doi.org/10.3138/9781442674356
Buolamwini, J., & Gebru, T. (2018). Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. In S. A. Friedler & C. Wilson (Hrsg.), Proceedings of the 1st Conference on Fairness, Accountability and Transparency (Bd. 81, S. 77–91). PMLR. https://proceedings.mlr.press/v81/buolamwini18a.html
Buzsáki, G., & Draguhn, A. (2004). Neuronal Oscillations in Cortical Networks. Science, 304(5679), 1926–1929. https://doi.org/10.1126/science.1099745
Camazine, S. (Hrsg.). (2003). Self-organization in biological systems (2. print., and 1. paperback print). Princeton Univ. Press.
Canny, J. (1986). A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6), 679–698. https://doi.org/10.1109/TPAMI.1986.4767851
Carr, N. G. (2015). The glass cage: How our computers are changing us. Norton & Company.
Castells, M. (2009). The Rise of the Network Society (1. Aufl.). Wiley. https://doi.org/10.1002/9781444319514
Castoriadis, C. (1987). The Imaginary Institution of Society. MIT Press.
Cavagna, A., Conti, D., Creato, C., Del Castello, L., Giardina, I., Grigera, T. S., Melillo, S., Parisi, L., & Viale, M. (2016). Dynamic scaling in natural swarms. https://doi.org/10.48550/ARXIV.1611.08201
Chalmers, D. (1995). Facing up to the problem of consciousness. Journal of Consciousness Studies, 2(3), 200–219.
Chalmers, D. J. (1996). The Conscious Mind: In Search of a Fundamental Theory (2nd edition). Oxford University Press.
Chalmers, D. J. (2006). Strong and weak emergence. In P. Clayton & P. Davies (Hrsg.), The re-emergence of emergence: The emergentist hypothesis from science to religion. Oxford University Press.
Chalmers, D. J. (2010). The Singularity: A Philosophical Analysis. Journal of Consciousness Studies, 17(9–10), 9–10.
Chartrand, T. L., & Bargh, J. A. (1999). The chameleon effect: The perception–behavior link and social interaction. Journal of Personality and Social Psychology, 76(6), 893–910. https://doi.org/10.1037/0022-3514.76.6.893
Chemero, A. (2011). Radical embodied cognitive science (First MIT Press paperback edition). MIT Press.
Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework for contrastive learning of visual representations. Proceedings of the 37th International Conference on Machine Learning.
Clark, A. (2003). Natural-born cyborgs: Minds, technologies, and the future of human intelligence. Oxford University Press.
Clark, A. (2008). Supersizing the Mind: Embodiment, Action, and Cognitive Extension (1. Aufl.). Oxford University PressNew York. https://doi.org/10.1093/acprof:oso/9780195333213.001.0001
Clark, A., & Chalmers, D. (1998). The Extended Mind. Analysis, 58(1), 7–19. https://doi.org/10.1093/analys/58.1.7
Contractor, N. S., Wasserman, S., & Faust, K. (2006). Testing multitheoretical, multilevel hypotheses about organizational networks: An analytic framework and empirical example. The Academy of Management Review, 31(3), 681–703. https://doi.org/10.2307/20159236
Corballis, M. C. (2014). Left Brain, Right Brain: Facts and Fantasies. PLoS Biology, 12(1), e1001767. https://doi.org/10.1371/journal.pbio.1001767
Cosmides, L., & Tooby, J. (1994). Beyond intuition and instinct blindness: Toward an evolutionarily rigorous cognitive science. Cognition, 50(1–3), 41–77. https://doi.org/10.1016/0010-0277(94)90020-5
Craver, C. F., & Bechtel, W. (2007). Top-down Causation Without Top-down Causes. Biology & Philosophy, 22(4), 547–563. https://doi.org/10.1007/s10539-006-9028-8
Crick, F., & Koch, C. (1990). Toward a Neurobiological Theory of Consciousness. Seminars in the Neurosciences, 2, 263–275.
Damasio, A. R. (1994). Descartes’ error: Emotion, reason and the human brain (18. Druck). Quill.
Damasio, A. R. (2010). Self comes to mind: Constructing the conscious brain (1. ed). Pantheon Books.
Davidson, R. J., & McEwen, B. S. (2012). Social influences on neuroplasticity: Stress and interventions to promote well-being. Nature Neuroscience, 15(5), 689–695. https://doi.org/10.1038/nn.3093
De Jaegher, H., & Di Paolo, E. (2007). Participatory sense-making: An enactive approach to social cognition. Phenomenology and the Cognitive Sciences, 6(4), 485–507. https://doi.org/10.1007/s11097-007-9076-9
De Souza E Silva, A. (2006). From Cyber to Hybrid: Mobile Technologies as Interfaces of Hybrid Spaces. Space and Culture, 9(3), 261–278. https://doi.org/10.1177/1206331206289022
De Waal, M., & De Lange, M. (2019). Introduction—The Hacker, the City and Their Institutions: From Grassroots Urbanism to Systemic Change. In M. De Lange & M. De Waal (Hrsg.), The Hackable City (S. 1–22). Springer Singapore. https://doi.org/10.1007/978-981-13-2694-3_1
Decety, J., Bartal, I. B.-A., Uzefovsky, F., & Knafo-Noam, A. (2016). Empathy as a driver of prosocial behaviour: Highly conserved neurobehavioural mechanisms across species. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1686), 20150077. https://doi.org/10.1098/rstb.2015.0077
Dehaene, S., & Changeux, J.-P. (2011). Experimental and Theoretical Approaches to Conscious Processing. Neuron, 70(2), 200–227. https://doi.org/10.1016/j.neuron.2011.03.018
Dehaene, S., Charles, L., King, J.-R., & Marti, S. (2014). Toward a computational theory of conscious processing. Current Opinion in Neurobiology, 25, 76–84. https://doi.org/10.1016/j.conb.2013.12.005
Dehaene, S., Lau, H., & Kouider, S. (2017). What is consciousness, and could machines have it? Science (New York, N.Y.), 358(6362), 486–492. https://doi.org/10.1126/science.aan8871
Dellermann, D., Calma, A., Lipusch, N., Weber, T., Weigel, S., & Ebel, P. (2021). The future of human-AI collaboration: A taxonomy of design knowledge for hybrid intelligence systems (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2105.03354
Dennett, D. C. (2018). From bacteria to Bach and back: The evolution of minds (Fist published as a Norton paperback). W. W. Norton & Company.
DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012). How Does the Brain Solve Visual Object Recognition? Neuron, 73(3), 415–434. https://doi.org/10.1016/j.neuron.2012.01.010
Dignum, V. (2019). Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way. Springer International Publishing. https://doi.org/10.1007/978-3-030-30371-6
Dikker, S., Wan, L., Davidesco, I., Kaggen, L., Oostrik, M., McClintock, J., Rowland, J., Michalareas, G., Van Bavel, J. J., Ding, M., & Poeppel, D. (2017). Brain-to-Brain Synchrony Tracks Real-World Dynamic Group Interactions in the Classroom. Current Biology, 27(9), 1375–1380. https://doi.org/10.1016/j.cub.2017.04.002
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2020). An Image is Worth 16×16 Words: Transformers for Image Recognition at Scale (Version 2). arXiv. https://doi.org/10.48550/ARXIV.2010.11929
Dubois, E., & Blank, G. (2018). The echo chamber is overstated: The moderating effect of political interest and diverse media. Information, Communication & Society, 21(5), 729–745. https://doi.org/10.1080/1369118X.2018.1428656
Duit, R. (1991). On the role of analogies and metaphors in learning science. Science Education, 75(6), 649–672. https://doi.org/10.1002/sce.3730750606
Dumas, G., & Fairhurst, M. T. (o. J.). Reciprocity and alignment: Quantifying coupling in dynamic interactions. Royal Society Open Science, 8(5), 210138. https://doi.org/10.1098/rsos.210138
Dumas, G., Nadel, J., Soussignan, R., Martinerie, J., & Garnero, L. (2010). Inter-Brain Synchronization during Social Interaction. PLoS ONE, 5(8), e12166. https://doi.org/10.1371/journal.pone.0012166
Dunbar, R. I. M. (2018). The Anatomy of Friendship. Trends in Cognitive Sciences, 22(1), 32–51. https://doi.org/10.1016/j.tics.2017.10.004
Durkheim, E., & Fields, K. E. (1912). The elementary forms of religious life. Free Press.
Elgammal, A., Liu, B., Elhoseiny, M., & Mazzone, M. (2017). CAN: Creative Adversarial Networks, Generating „Art“ by Learning About Styles and Deviating from Style Norms (Version 1). arXiv. https://doi.org/10.48550/ARXIV.1706.07068
Eliade, M. (1987). The sacred and the profane: The nature of religion ; [the groundbreaking work by one of the greatest authorities on myth, symbol, and ritual] (W. R. Trask, Übers.). Harcourt, Brace.
Ellis, G. F. R. (2012). Top-down causation and emergence: Some comments on mechanisms. Interface Focus, 2(1), 126–140. https://doi.org/10.1098/rsfs.2011.0062
Epstein, J. M., & Axtell, R. (with 2050 Project). (1996). Growing artificial societies: Social science from the bottom up. Brookings Institution Press.
Evans, D. (1996). An introductory dictionary of Lacanian psychoanalysis. Routledge.
Featherstone, M., Lash, S., Robertson, R., & Robertson, R. (1995). Glocalization: Time-Space and Homogeneity-Heterogeneity. 25–44. https://doi.org/10.4135/9781446250563.n2
Feenberg, A. (2002). Transforming technology: A critical theory revisited. Oxford University Press.
Fehr, E., & Fischbacher, U. (2003). The nature of human altruism. Nature, 425(6960), 785–791. https://doi.org/10.1038/nature02043
Festinger, L. (1957). A Theory of Cognitive Dissonance. Stanford University Press. https://doi.org/10.1515/9781503620766
Fink, B. (1997). The Lacanian subject: Between language and jouissance (3. print., and 1. paperback print). Princeton Univ. Press.
Fishkin, J. S. (2018). Democracy When the People Are Thinking (Bd. 1). Oxford University Press. https://doi.org/10.1093/oso/9780198820291.001.0001
Flaxman, S., Goel, S., & Rao, J. M. (2016). Filter Bubbles, Echo Chambers, and Online News Consumption. Public Opinion Quarterly, 80(S1), 298–320. https://doi.org/10.1093/poq/nfw006
Fletcher, R., & Nielsen, R. K. (2018). Are people incidentally exposed to news on social media? A comparative analysis. New Media & Society, 20(7), 2450–2468. https://doi.org/10.1177/1461444817724170
Floridi, L. (2014). The 4th revolution: How the infosphere is reshaping human reality (First edition). Oxford University Press.
Foerster, J. N., Assael, Y. M., de Freitas, N., & Whiteson, S. (2016). Learning to Communicate with Deep Multi-Agent Reinforcement Learning (Version 2). arXiv. https://doi.org/10.48550/ARXIV.1605.06676
Forrester, J. W. (1971). World Dynamics. Wright-Allen Press.
Fries, P. (2015). Rhythms for Cognition: Communication through Coherence. Neuron, 88(1), 220–235. https://doi.org/10.1016/j.neuron.2015.09.034
Frigg, R., & Werndl, C. (2011). Entropy: Aguide for the Perplexed. In C. Beisbart & S. Hartmann (Hrsg.), Probabilities in Physics (1. Aufl., S. 115–142). Oxford University PressOxford. https://doi.org/10.1093/acprof:oso/9780199577439.003.0005
Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815–836. https://doi.org/10.1098/rstb.2005.1622
Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11(2), 127–138. https://doi.org/10.1038/nrn2787
Fromm, J. (2005). Types and Forms of Emergence (Version 1). arXiv. https://doi.org/10.48550/ARXIV.NLIN/0506028
Gardner, H. (2011). Frames of mind: The theory of multiple intelligences. Basic Books.
Garton Ash, T. (2016). Redefreiheit: Prinzipien für eine vernetzte Welt (H. Dierlamm & T. Pfeiffer, Übers.). Carl Hanser Verlag.
Gentner, D., & Holyoak, K. J. (1997). Reasoning and learning by analogy: Introduction. American Psychologist, 52(1), 32–34. https://doi.org/10.1037/0003-066X.52.1.32
Geschke, D., Lorenz, J., & Holtz, P. (2019). The triple‐filter bubble: Using agent‐based modelling to test a meta‐theoretical framework for the emergence of filter bubbles and echo chambers. British Journal of Social Psychology, 58(1), 129–149. https://doi.org/10.1111/bjso.12286
Gibbs, Jr, R. W. (2005). Embodiment and Cognitive Science (1. Aufl.). Cambridge University Press. https://doi.org/10.1017/CBO9780511805844
Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12(3), 306–355. https://doi.org/10.1016/0010-0285(80)90013-4
Gigerenzer, G., & Todd, P. M. (2001). Simple heuristics that make us smart (1. issued as an Oxford Univ. Press paperback). Oxford University Press.
Goertzel, B., & Pennachin, C. (Hrsg.). (2007). Artificial general intelligence. Springer.
Goldberg, R. (2011). Performance art: From Futurism to the present (3. ed). Thames & Hudson.
Goldstein, J. (1999). Emergence as a Construct: History and Issues. Emergence, 1(1), 49–72. https://doi.org/10.1207/s15327000em0101_4
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Networks (arXiv:1406.2661). arXiv. http://arxiv.org/abs/1406.2661
Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and Harnessing Adversarial Examples (arXiv:1412.6572). arXiv. http://arxiv.org/abs/1412.6572
Green, A. E., Kraemer, D. J. M., Fugelsang, J. A., Gray, J. R., & Dunbar, K. N. (2010). Connecting Long Distance: Semantic Distance in Analogical Reasoning Modulates Frontopolar Cortex Activity. Cerebral Cortex, 20(1), 70–76. https://doi.org/10.1093/cercor/bhp081
Grønsund, T., & Aanestad, M. (2020). Augmenting the algorithm: Emerging human-in-the-loop work configurations. The Journal of Strategic Information Systems, 29(2), 101614. https://doi.org/10.1016/j.jsis.2020.101614
Gros, C. (2015). Complex and Adaptive Dynamical Systems: A Primer. Springer International Publishing. https://doi.org/10.1007/978-3-319-16265-2
Grossberg, S. (2013). Adaptive Resonance Theory: How a brain learns to consciously attend, learn, and recognize a changing world. Neural Networks, 37, 1–47. https://doi.org/10.1016/j.neunet.2012.09.017
Gunkel, D. J. (2019). An introduction to communication and artificial intelligence. Polity Press.
Guston, D. H. (2014). Understanding ‘anticipatory governance’. Social Studies of Science, 44(2), 218–242. https://doi.org/10.1177/0306312713508669
Ha, D., Dai, A. M., & Le, Q. V. (2022, Juli 21). HyperNetworks. International Conference on Learning Representations. https://openreview.net/forum?id=rkpACe1lx
Hansen, M. B. N. (2006). New philosophy for new media. MIT.
Harlan, V., Rappmann, R., Schata, P., & Beuys, J. (1976). Soziale Plastik: Materialien zu Joseph Beuys. Achberger Verlagsanst.
Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-Inspired Artificial Intelligence. Neuron, 95(2), 245–258. https://doi.org/10.1016/j.neuron.2017.06.011
Hasson, U., Ghazanfar, A. A., Galantucci, B., Garrod, S., & Keysers, C. (2012). Brain-to-brain coupling: A mechanism for creating and sharing a social world. Trends in Cognitive Sciences, 16(2), 114–121. https://doi.org/10.1016/j.tics.2011.12.007
Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., & Malach, R. (2004). Intersubject Synchronization of Cortical Activity During Natural Vision. Science, 303(5664), 1634–1640. https://doi.org/10.1126/science.1089506
Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex. Science, 293(5539), 2425–2430. https://doi.org/10.1126/science.1063736
Hayles, N. K. (2012). How we think: Digital media and contemporary technogenesis. The University of Chicago Press.
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition (Version 1). arXiv. https://doi.org/10.48550/ARXIV.1512.03385
Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory (1. issued in paperback). Routledge.
Helbing, D. (2013). Globally networked risks and how to respond. Nature, 497(7447), 51–59. https://doi.org/10.1038/nature12047
Helbing, D., Frey, B. S., Gigerenzer, G., Hafen, E., Hagner, M., Hofstetter, Y., Van Den Hoven, J., Zicari, R. V., & Zwitter, A. (2019). Will Democracy Survive Big Data and Artificial Intelligence? 73–98. https://doi.org/10.1007/978-3-319-90869-4_7
Helliwell, J. F., Layard, R., Sachs, J. D., & Neve, J.-E. D. (2020, März 20). World Happiness Report 2020. https://worldhappiness.report/ed/2020/
Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? The Behavioral and Brain Sciences, 33(2–3), 61–83; discussion 83-135. https://doi.org/10.1017/S0140525X0999152X
Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T., & Kingsbury, B. (2012). Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Processing Magazine, 29(6), 82–97. https://doi.org/10.1109/MSP.2012.2205597
Hipp, J. F., Engel, A. K., & Siegel, M. (2011). Oscillatory Synchronization in Large-Scale Cortical Networks Predicts Perception. Neuron, 69(2), 387–396. https://doi.org/10.1016/j.neuron.2010.12.027
Hoffman, D. D. (2019). The case against reality: Why evolution hid the truth from our eyes (First edition). W.W. Norton & Company, Independent Publishers since 1923.
Hoffmann, D. L., Standish, C. D., García-Diez, M., Pettitt, P. B., Milton, J. A., Zilhão, J., Alcolea-González, J. J., Cantalejo-Duarte, P., Collado, H., De Balbín, R., Lorblanchet, M., Ramos-Muñoz, J., Weniger, G.-Ch., & Pike, A. W. G. (2018). U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art. Science, 359(6378), 912–915. https://doi.org/10.1126/science.aap7778
Hollan, J., Hutchins, E., & Kirsh, D. (2000). Distributed cognition: Toward a new foundation for human-computer interaction research. ACM Transactions on Computer-Human Interaction, 7(2), 174–196. https://doi.org/10.1145/353485.353487
Holland, J. H. (2000). Emergence: From chaos to order. Oxford Univ. Press.
Holling, C. S. (Hrsg.). (1978). Adaptive environmental assessment and management. Workshop on Adaptive Assessment of Ecological Policies, [Laxenburg, Austria] : Chichester ; New York. International Institute for Applied Systems Analysis ; Wiley.
Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial Intelligence in Education: Promises and Implications for Teaching and Learning | Welcome to TeachOnline. Boston: Centre for Curriculum Redesign. https://teachonline.ca/tools-trends/must-read-books-on-online-learning/artificial-intelligence-education-promises-and-implications-teaching-and-learning
Holyoak, K. J., & Thagard, P. (1994). Mental Leaps: Analogy in Creative Thought. The MIT Press. https://doi.org/10.7551/mitpress/4549.001.0001
Humphreys, P. (2016). Emergence: A Philosophical Account. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780190620325.001.0001
Husserl, E. (1966). Analysen Zur Passiven Synthesis: Aus Vorlesungs- Und Forschungsmanuskripten 1918-1926. Martinus Nijhoff.
Hutchins, E. (2006). Cognition in the wild (8. pr). MIT Press.
Iyaniwura, S. A., & Ward, M. J. (2020). Synchrony and Oscillatory Dynamics for a 2-D PDE-ODE Model of Diffusion-Sensing with Small Signaling Compartments (arXiv:2007.08765). arXiv. http://arxiv.org/abs/2007.08765
Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577–586. https://doi.org/10.1016/j.bushor.2018.03.007
Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence, 1(9), 389–399. https://doi.org/10.1038/s42256-019-0088-2
Kahneman, D. (2011). Thinking, fast and slow (S. 499). Farrar, Straus and Giroux.
Kamar, E., Hacker, S., & Horvitz, E. (2012). Combining human and machine intelligence in large-scale crowdsourcing. Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems – Volume 1, 467–474.
Kandel, E. R. (Hrsg.). (2013). Principles of neural science (5th ed). McGraw-Hill.
Karpathy, A., Johnson, J., & Fei-Fei, L. (2015). Visualizing and Understanding Recurrent Networks (arXiv:1506.02078). arXiv. http://arxiv.org/abs/1506.02078
Kasparov, G. K., & Greengard, M. (2017). Deep thinking: Where machine intelligence ends and human creativity begins(First edition). PublicAffairs, an imprint of Perseus Books, LLC.
Kauffman, S. A. (1993). The Origins of Order: Self-Organization and Selection in Evolution. Oxford University PressNew York, NY. https://doi.org/10.1093/oso/9780195079517.001.0001
Kelso, J. A. S. (1995). Dynamic patterns: The self-organization of brain and behavior (3.print). MIT Press.
Kenter, J. O., O’Brien, L., Hockley, N., Ravenscroft, N., Fazey, I., Irvine, K. N., Reed, M. S., Christie, M., Brady, E., Bryce, R., Church, A., Cooper, N., Davies, A., Evely, A., Everard, M., Fish, R., Fisher, J. A., Jobstvogt, N., Molloy, C., … Williams, S. (2015). What are shared and social values of ecosystems? Ecological Economics, 111, 86–99. https://doi.org/10.1016/j.ecolecon.2015.01.006
Kitchin, R. (2014). The Data Revolution: Big Data, Open Data, Data Infrastructures & Their Consequences. SAGE Publications Ltd. https://doi.org/10.4135/9781473909472
Klein, J. T. (1993). Interdisciplinarity: History, theory, and practice (3. print). Wayne State Univ. Press.
Konvalinka, I., & Roepstorff, A. (2012). The two-brain approach: How can mutually interacting brains teach us something about social interaction? Frontiers in Human Neuroscience, 6. https://doi.org/10.3389/fnhum.2012.00215
Kosslyn, S. M. (1980). Image and mind. Harvard University Press.
Kosslyn, S. M., Ganis, G., & Thompson, W. L. (2001). Neural foundations of imagery. Nature Reviews Neuroscience, 2(9), 635–642. https://doi.org/10.1038/35090055
Kosslyn, S. M., Thompson, W. L., & Ganis, G. (2006). The Case for Mental Imagery. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195179088.001.0001
Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A., & Poeppel, D. (2017). Neuroscience Needs Behavior: Correcting a Reductionist Bias. Neuron, 93(3), 480–490. https://doi.org/10.1016/j.neuron.2016.12.041
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems, 25. https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
Kurzweil, R. (2006). The singularity is near: When humans transcend biology. Penguin Books.
Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic program induction. Science (New York, N.Y.), 350(6266), 1332–1338. https://doi.org/10.1126/science.aab3050
Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building machines that learn and think like people. Behavioral and Brain Sciences, 40, e253. https://doi.org/10.1017/S0140525X16001837
Lakoff, G., & Johnson, M. (20). Philosophy in the flesh: The embodied mind and its challenge to Western thought(Nachdr.). Basic Books.
Laskar, J., Boué, G., & Correia, A. C. M. (2012). Tidal dissipation in multi-planet systems and constraints on orbit fitting. Astronomy & Astrophysics, 538, A105. https://doi.org/10.1051/0004-6361/201116643
Launay, J., Tarr, B., & Dunbar, R. I. M. (2016). Synchrony as an Adaptive Mechanism for Large‐Scale Human Social Bonding. Ethology, 122(10), 779–789. https://doi.org/10.1111/eth.12528
LeCun, Y. (o. J.). A Path Towards Autonomous Machine Intelligence Version 0.9.2, 2022-06-27.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791
Levin, S. A. (1998). Ecosystems and the Biosphere as Complex Adaptive Systems. Ecosystems, 1(5), 431–436. https://doi.org/10.1007/s100219900037
Lévy, P. (1997). Collective intelligence: Mankind’s emerging world in cyberspace. Plenum Trade.
Licklider, J. C. R. (1960). Man-Computer Symbiosis. IRE Transactions on Human Factors in Electronics, HFE-1(1), 4–11. https://doi.org/10.1109/THFE2.1960.4503259
Liu, H.-Y., Kobernus, M., Broday, D., & Bartonova, A. (2014). A conceptual approach to a citizens’ observatory – supporting community-based environmental governance. Environmental Health, 13(1), 107. https://doi.org/10.1186/1476-069X-13-107
Liu, X., Faes, L., Kale, A. U., Wagner, S. K., Fu, D. J., Bruynseels, A., Mahendiran, T., Moraes, G., Shamdas, M., Kern, C., Ledsam, J. R., Schmid, M. K., Balaskas, K., Topol, E. J., Bachmann, L. M., Keane, P. A., & Denniston, A. K. (2019). A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: A systematic review and meta-analysis. The Lancet Digital Health, 1(6), e271–e297. https://doi.org/10.1016/S2589-7500(19)30123-2
Lizier, J. T., Prokopenko, M., & Zomaya, A. Y. (2014). A Framework for the Local Information Dynamics of Distributed Computation in Complex Systems. In M. Prokopenko (Hrsg.), Guided Self-Organization: Inception (Bd. 9, S. 115–158). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-53734-9_5
Lorenz, E. N. (1963). Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20(2), 130–141. https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
Lowe, D. G. (1999). Object recognition from local scale-invariant features. Proceedings of the Seventh IEEE International Conference on Computer Vision, 1150–1157 Bd.2. https://doi.org/10.1109/ICCV.1999.790410
Luhmann, N. (1984). Soziale Systeme: Grundriß einer allgemeinen Theorie. Suhrkamp.
Malone, T. W. (2018). Superminds: The surprising power of people and computers thinking together (First edition). Little, Brown and Company.
Malone, T. W., Laubacher, R., & Dellarocas, C. N. (2009). Harnessing Crowds: Mapping the Genome of Collective Intelligence. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1381502
Manzano, G., Galve, F., Giorgi, G. L., Hernández-García, E., & Zambrini, R. (2013). Synchronization, quantum correlations and entanglement in oscillator networks. Scientific Reports, 3(1), 1439. https://doi.org/10.1038/srep01439
Marks, D. F. (1973). VISUAL IMAGERY DIFFERENCES IN THE RECALL OF PICTURES. British Journal of Psychology, 64(1), 17–24. https://doi.org/10.1111/j.2044-8295.1973.tb01322.x
Maturana, H. R., & Varela, F. J. (1980). Autopoiesis and Cognition: The Realization of the Living (Bd. 42). Springer Netherlands. https://doi.org/10.1007/978-94-009-8947-4
McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955. AI Magazine, 27(4), Article 4. https://doi.org/10.1609/aimag.v27i4.1904
McGonigal, J. (2011). Reality is broken: Why games make us better and how they can change the world (S. 388). Penguin Press.
McLuhan, M. (1994). Understanding media: The extensions of man (1st MIT Press ed). MIT Press.
Metzinger, T. (2004). Being no one: The self-model theory of subjectivity (First MIT Press paperback edition). MIT Press.
Michel, C. M., & Murray, M. M. (2012). Towards the utilization of EEG as a brain imaging tool. NeuroImage, 61(2), 371–385. https://doi.org/10.1016/j.neuroimage.2011.12.039
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81–97. https://doi.org/10.1037/h0043158
Miller, J. H., & Page, S. E. (2007). Complex adaptive systems: An introduction to computational models of social life. Princeton University Press.
Minsky, M., & Papert, S. A. (1972). Perceptrons: An introduction to computational geometry (2. print. with corr). The MIT Press.
Mitchell, M. (2009). Complexity: A guided tour. Oxford University Press.
Mitchell, S. D. (2003). Biological Complexity and Integrative Pluralism (1. Aufl.). Cambridge University Press. https://doi.org/10.1017/CBO9780511802683
Montague, P. (2002). Hyperscanning: Simultaneous fMRI during Linked Social Interactions. NeuroImage, 16(4), 1159–1164. https://doi.org/10.1006/nimg.2002.1150
Mordvintsev, A. (2015). Inceptionism: Going Deeper into Neural Networks [Google Research Blog]. http://research.google/blog/inceptionism-going-deeper-into-neural-networks/
Morin, E. (2008). On complexity. Hampton Press.
Morowitz, H. J. (2002). The Emergence of Everything: How the World Became Complex. Oxford University Press.
Mountcastle, V. B. (1957). MODALITY AND TOPOGRAPHIC PROPERTIES OF SINGLE NEURONS OF CAT’S SOMATIC SENSORY CORTEX. Journal of Neurophysiology, 20(4), 408–434. https://doi.org/10.1152/jn.1957.20.4.408
Mu, Y., Guo, C., & Han, S. (2016). Oxytocin enhances inter-brain synchrony during social coordination in male adults. Social Cognitive and Affective Neuroscience, 11(12), 1882–1893. https://doi.org/10.1093/scan/nsw106
Mu, Y., Han, S., & Gelfand, M. J. (2017). The role of gamma interbrain synchrony in social coordination when humans face territorial threats. Social Cognitive and Affective Neuroscience, 12(10), 1614–1623. https://doi.org/10.1093/scan/nsx093
Musk, E. & Neuralink. (2019). An integrated brain-machine interface platform with thousands of channels. https://doi.org/10.1101/703801
Neisser, U. (2014). Cognitive psychology (Classic edition). Psychology press.
Nersessian, N. J. (2010). Creating scientific concepts (1. MIT Press paperback ed). MIT Press.
Newen, A., De Bruin, L., & Gallagher, S. (Hrsg.). (2018). The Oxford Handbook of 4E Cognition (1. Aufl.). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780198735410.001.0001
Nissenbaum, H. (2009). Privacy in Context: Technology, Policy, and the Integrity of Social Life. Stanford University Press.
Nonaka, I., & Takeuchi, H. (1995). The knowledge-creating company: How Japanese companies create the dynamics of innovation. Oxford University Press.
Oberlaender, M., De Kock, C. P. J., Bruno, R. M., Ramirez, A., Meyer, H. S., Dercksen, V. J., Helmstaedter, M., & Sakmann, B. (2012). Cell Type–Specific Three-Dimensional Structure of Thalamocortical Circuits in a Column of Rat Vibrissal Cortex. Cerebral Cortex, 22(10), 2375–2391. https://doi.org/10.1093/cercor/bhr317
Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007). Consensus and Cooperation in Networked Multi-Agent Systems. Proceedings of the IEEE, 95(1), 215–233. https://doi.org/10.1109/JPROC.2006.887293
Olshausen, B., Anderson, C., & Van Essen, D. (1993). A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. The Journal of Neuroscience, 13(11), 4700–4719. https://doi.org/10.1523/JNEUROSCI.13-11-04700.1993
O’Neil, C. (2016). Weapons of math destruction: How big data increases inequality and threatens democracy (First edition). Crown.
Paivio, A. (1990). Mental representations: A dual coding approach. Clarendon Press.
Panofsky, E. (1939). Studies in Iconology: Humanistic Themes In the Art of the Renaissance (1. Aufl.). Routledge. https://doi.org/10.4324/9780429497063
Papacharissi, Z. (2014). Affective Publics: Sentiment, Technology, and Politics. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199999736.001.0001
Pariser, E. (2012). The filter bubble: What the Internet is hiding from you. Penguin books.
Pavlov, I. P. (2010). Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. Annals of neurosciences, 17(3). https://doi.org/10.5214/ans.0972-7531.1017309
Pazaitis, A., De Filippi, P., & Kostakis, V. (2017). Blockchain and value systems in the sharing economy: The illustrative case of Backfeed. Technological Forecasting and Social Change, 125, 105–115. https://doi.org/10.1016/j.techfore.2017.05.025
Pearson, J., Naselaris, T., Holmes, E. A., & Kosslyn, S. M. (2015). Mental Imagery: Functional Mechanisms and Clinical Applications. Trends in Cognitive Sciences, 19(10), 590–602. https://doi.org/10.1016/j.tics.2015.08.003
Pelaprat, E., & Cole, M. (2011). “Minding the Gap”: Imagination, Creativity and Human Cognition. Integrative Psychological and Behavioral Science, 45(4), 397–418. https://doi.org/10.1007/s12124-011-9176-5
Penrose, R., & Gardner, M. (2016). The emperor’s new mind: Concerning computers, minds and the laws of physics(Revised impression). Oxford University Press.
Pentland, A. (2014). Social Physics: How good ideas spread — the lessons from a new science. Scribe Publications.
Persky, J. (1995). The Ethology of Homo Economicus. Journal of Economic Perspectives, 9(2), 221–231. https://doi.org/10.1257/jep.9.2.221
Piaget, J. (1952). The origins of intelligence in children. (S. 419). W W Norton & Co. https://doi.org/10.1037/11494-000
Picard, R. W. (2000). Affective computing (1. paperback ed). MIT Press.
Pikovsky, A., Rosenblum, M., & Kurths, J. (2001). Synchronization: A Universal Concept in Nonlinear Sciences (1. Aufl.). Cambridge University Press. https://doi.org/10.1017/CBO9780511755743
Pinch, T., & Bijsterveld, K. (Hrsg.). (2012). The Oxford handbook of sound studies. Oxford University Press.
Polak, F., Polak, F. L., Boulding, E., Boulding, E., Polak, F., & Polak, F. (1973). The image of the future. Elsevier Scientific Publ. Comp.
Prigogine, I., & Stengers, I. (1984). Order out of chaos: Man’s new dialogue with nature (5. [print.]). Bantam Books.
Pylyshyn, Z. W. (2002). Mental imagery: In search of a theory. Behavioral and Brain Sciences, 25(2), 157–182. https://doi.org/10.1017/S0140525X02000043
Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., & Sutskever, I. (2021). Learning Transferable Visual Models From Natural Language Supervision(Version 1). arXiv. https://doi.org/10.48550/ARXIV.2103.00020
Rahwan, I., Cebrian, M., Obradovich, N., Bongard, J., Bonnefon, J.-F., Breazeal, C., Crandall, J. W., Christakis, N. A., Couzin, I. D., Jackson, M. O., Jennings, N. R., Kamar, E., Kloumann, I. M., Larochelle, H., Lazer, D., McElreath, R., Mislove, A., Parkes, D. C., Pentland, A. ‘Sandy’, … Wellman, M. (2019). Machine behaviour. Nature, 568(7753), 477–486. https://doi.org/10.1038/s41586-019-1138-y
Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M. (2022). Hierarchical Text-Conditional Image Generation with CLIP Latents (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2204.06125
Ramseyer, F., & Tschacher, W. (2011). Nonverbal synchrony in psychotherapy: Coordinated body movement reflects relationship quality and outcome. Journal of Consulting and Clinical Psychology, 79(3), 284–295. https://doi.org/10.1037/a0023419
Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79–87. https://doi.org/10.1038/4580
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2015). You Only Look Once: Unified, Real-Time Object Detection(Version 5). arXiv. https://doi.org/10.48550/ARXIV.1506.02640
Reindl, V., Gerloff, C., Scharke, W., & Konrad, K. (2018). Brain-to-brain synchrony in parent-child dyads and the relationship with emotion regulation revealed by fNIRS-based hyperscanning. NeuroImage, 178, 493–502. https://doi.org/10.1016/j.neuroimage.2018.05.060
Reynolds, R. (1994). An Introduction to Cultural Algorithms.
Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to Recommender Systems Handbook. In F. Ricci, L. Rokach, B. Shapira, & P. B. Kantor (Hrsg.), Recommender Systems Handbook (S. 1–35). Springer US. https://doi.org/10.1007/978-0-387-85820-3_1
Richland, L. E., Chan, T.-K., Morrison, R. G., & Au, T. K.-F. (2010). Young children’s analogical reasoning across cultures: Similarities and differences. Journal of Experimental Child Psychology, 105(1–2), 146–153. https://doi.org/10.1016/j.jecp.2009.08.003
Riedl, M., Müller, A., & Wessel, N. (2013). Practical considerations of permutation entropy: A tutorial review. The European Physical Journal Special Topics, 222(2), 249–262. https://doi.org/10.1140/epjst/e2013-01862-7
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192. https://doi.org/10.1146/annurev.neuro.27.070203.144230
Robertson, L. C. (2003). Binding, spatial attention and perceptual awareness. Nature Reviews Neuroscience, 4(2), 93–102. https://doi.org/10.1038/nrn1030
Roenneberg, T., Kantermann, T., Juda, M., Vetter, C., & Allebrandt, K. V. (2013). Light and the human circadian clock. Handbook of Experimental Pharmacology, 217, 311–331. https://doi.org/10.1007/978-3-642-25950-0_13
Rosa, H. (2016). Resonanz: Eine Soziologie der Weltbeziehung (1. Auflage). Suhrkamp.
Rough, J. (2002). Society’s Breakthrough! Releasing essential wisdom and virtue in all people. AuthorHouse.
Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206–215. https://doi.org/10.1038/s42256-019-0048-x
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536. https://doi.org/10.1038/323533a0
Russell, S. J. (2019). Human compatible: Artificial intelligence and the problem of control. Viking.
Russell, S. J., & Norvig, P. (2021). Artificial intelligence: A modern approach (Fourth edition). Pearson.
Saenz, M. J., Revilla, E., & Simón, C. (2020). Designing AI Systems With Human-Machine Teams. MIT Sloan Management Review. https://sloanreview.mit.edu/article/designing-ai-systems-with-human-machine-teams/
Sartre, J.-P., & Elkaïm-Sartre, A. (2004). The imaginary: A phenomenological psychology of the imagination. Routledge.
Sawyer, R. K. (2005). Social Emergence: Societies As Complex Systems (1. Aufl.). Cambridge University Press. https://doi.org/10.1017/CBO9780511734892
Schacter, D. L., Addis, D. R., & Buckner, R. L. (2007). Remembering the past to imagine the future: The prospective brain. Nature Reviews Neuroscience, 8(9), 657–661. https://doi.org/10.1038/nrn2213
Schafer, R. M. (1993). The soundscape: Our sonic environment and the tuning of the world. Destiny Books ; Distributed to the book trade in the United States by American International Distribution Corp.
Schilbach, L., Timmermans, B., Reddy, V., Costall, A., Bente, G., Schlicht, T., & Vogeley, K. (2013). Toward a second-person neuroscience. Behavioral and Brain Sciences, 36(4), 393–414. https://doi.org/10.1017/S0140525X12000660
Schuman, C. D., Potok, T. E., Patton, R. M., Birdwell, J. D., Dean, M. E., Rose, G. S., & Plank, J. S. (2017). A Survey of Neuromorphic Computing and Neural Networks in Hardware (Version 1). arXiv. https://doi.org/10.48550/ARXIV.1705.06963
Schwartz, P. (1991). The Art of the Long View. Doubleday/Currency.
Sclove, R. (1995). Democracy and technology. Guilford Press.
Searle, J. R. (1983). Intentionality: An Essay in the Philosophy of Mind (1. Aufl.). Cambridge University Press. https://doi.org/10.1017/CBO9781139173452
Seligman, M. E. P., Railton, P., Baumeister, R. F., & Sripada, C. (2013). Navigating Into the Future or Driven by the Past. Perspectives on Psychological Science: A Journal of the Association for Psychological Science, 8(2), 119–141. https://doi.org/10.1177/1745691612474317
Shanken, E. A. (2005). Artists in Industry and the Academy: Collaborative Research, Interdisciplinary Scholarship and the Creation and Interpretation of Hybrid Forms. Leonardo, 38(5), 415–418. https://doi.org/10.1162/leon.2005.38.5.415
Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Shepard, R. N., & Metzler, J. (1971). Mental Rotation of Three-Dimensional Objects. Science, 171(3972), 701–703. https://doi.org/10.1126/science.171.3972.701
Shevlin, H. (2018). To build conscious machines, focus on general intelligence: A framework for the assessment of consciousness in biological and artificial systems. https://doi.org/10.17863/CAM.40234
Shiogai, Y., Stefanovska, A., & McClintock, P. V. E. (2010). Nonlinear dynamics of cardiovascular ageing. Physics Reports, 488(2–3), 51–110. https://doi.org/10.1016/j.physrep.2009.12.003
Shneiderman, B. (2020). Human-Centered Artificial Intelligence: Reliable, Safe & Trustworthy. International Journal of Human–Computer Interaction, 36(6), 495–504. https://doi.org/10.1080/10447318.2020.1741118
Siegel, E. (2016). Predictive analytics: The power to predict who will click, buy, lie, or die (Revised and updated edition). Wiley.
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484–489. https://doi.org/10.1038/nature16961
Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., & Hassabis, D. (2017). Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm (arXiv:1712.01815). arXiv. http://arxiv.org/abs/1712.01815
Singer, T., & Klimecki, O. M. (2014). Empathy and compassion. Current Biology, 24(18), R875–R878. https://doi.org/10.1016/j.cub.2014.06.054
Singer, W. (1999). Neuronal Synchrony: A Versatile Code for the Definition of Relations? Neuron, 24(1), 49–65. https://doi.org/10.1016/S0896-6273(00)80821-1
Singer, W., & Gray, C. M. (1995). Visual Feature Integration and the Temporal Correlation Hypothesis. Annual Review of Neuroscience, 18(1), 555–586. https://doi.org/10.1146/annurev.ne.18.030195.003011
Sivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods. Journal of Business Research, 70, 263–286. https://doi.org/10.1016/j.jbusres.2016.08.001
Skinner, B. F. (1965). Science and human behavior (First Free Press Paperback Edition). The Free Press.
Sorace, C. (2014). China’s Last Communist: Ai Weiwei. Critical Inquiry, 40(2), 396–419. https://doi.org/10.1086/674120
Spearman, C. (1904). „General Intelligence,“ Objectively Determined and Measured. The American Journal of Psychology, 15(2), 201. https://doi.org/10.2307/1412107
Spence, C., & Deroy, O. (2013). How automatic are crossmodal correspondences? Consciousness and Cognition, 22(1), 245–260. https://doi.org/10.1016/j.concog.2012.12.006
Spinoza, B. de, Shirley, S., & Feldman, S. (1992). The ethics ; Treatise on the emendation of the intellect ; Selected letters(2nd ed). Hackett Pub. Co.
Spiro, R. J., Feltovich, P. J., Coulson, R. L., & Anderson, D. K. (1989). Multiple analogies for complex concepts: Antidotes for analogy-induced misconception in advanced knowledge acquisition. In S. Vosniadou & A. Ortony (Hrsg.), Similarity and Analogical Reasoning (1. Aufl., S. 498–531). Cambridge University Press. https://doi.org/10.1017/CBO9780511529863.023
Sporns, O. (2011). Networks of the brain. Massachusetts institute of technology.
Sporns, O., Tononi, G., & Kötter, R. (2005). The Human Connectome: A Structural Description of the Human Brain. PLoS Computational Biology, 1(4), e42. https://doi.org/10.1371/journal.pcbi.0010042
Squire, L. R. (2004). Memory systems of the brain: A brief history and current perspective. Neurobiology of Learning and Memory, 82(3), 171–177. https://doi.org/10.1016/j.nlm.2004.06.005
Stanciu, D. (2023). Consciousness, 4E cognition and Aristotle: A few conceptual and historical aspects. Frontiers in Computational Neuroscience, 17, 1204602. https://doi.org/10.3389/fncom.2023.1204602
Steels, L., & Brooks, R. (Hrsg.). (2018). The artificial life route to artificial intelligence: Building embodied, situated agents. Routledge, Taylor & Francis Group.
Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. MIT Press.
Stephens, G. J., Silbert, L. J., & Hasson, U. (2010). Speaker–listener neural coupling underlies successful communication. Proceedings of the National Academy of Sciences, 107(32), 14425–14430. https://doi.org/10.1073/pnas.1008662107
Sternberg, R. J. (1985). Beyond IQ: A triarchic theory of human intelligence. Cambridge University Press.
Sternberg, R. J., Conway, B. E., Ketron, J. L., & Bernstein, M. (1981). People’s conceptions of intelligence. Journal of Personality and Social Psychology, 41(1), 37–55. https://doi.org/10.1037/0022-3514.41.1.37
Stone, P., Brooks, R., Brynjolfsson, E., Calo, R., Etzioni, O., Hager, G., Hirschberg, J., Kalyanakrishnan, S., Kamar, E., Kraus, S., Leyton-Brown, K., Parkes, D., Press, W., Saxenian, A., Shah, J., Tambe, M., & Teller, A. (2022). Artificial Intelligence and Life in 2030: The One Hundred Year Study on Artificial Intelligence (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2211.06318
Streltsov, A., Adesso, G., & Plenio, M. B. (2017). Colloquium: Quantum coherence as a resource. Reviews of Modern Physics, 89(4), 041003. https://doi.org/10.1103/RevModPhys.89.041003
Strogatz, S. (1994). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering(Second edition, first issued in hardback). CRC Press.
Strogatz, S. (2003). Sync: How order emerges from chaos in the universe, nature, and daily life (1. paperback ed). Hyperion.
Suchman, L. (2006). Human-Machine Reconfigurations: Plans and Situated Actions (2. Aufl.). Cambridge University Press. https://doi.org/10.1017/CBO9780511808418
Suddendorf, T., & Corballis, M. C. (2007). The evolution of foresight: What is mental time travel, and is it unique to humans? Behavioral and Brain Sciences, 30(3), 299–313. https://doi.org/10.1017/S0140525X07001975
Sunstein, C. R. (2002). Republic.com (3. print., and 1. paperback print. with a new afterword). Princeton University Press.
Sunstein, C. R. (2017). #Republic: Divided democracy in the age of social media. Princeton University Press.
Surowiecki, J. (2005). The wisdom of crowds (Nachdr.). Anchor Books.
Taves, A. (2009). Religious experience reconsidered: A building-block approach to the study of religion and other special things (Second printing, and first paperback printing). Princeton University Press.
Tegmark, M. (2017). Life 3.0: Being human in the age of artificial intelligence. Allen Lane.
Thelen, E., & Smith, L. B. (2002). A dynamic systems approach to the development of cognition and action (5. print). MIT Press.
Thompson, E., & Stapleton, M. (2009). Making Sense of Sense-Making: Reflections on Enactive and Extended Mind Theories. Topoi, 28(1), 23–30. https://doi.org/10.1007/s11245-008-9043-2
Tomasello, M., Carpenter, M., Call, J., Behne, T., & Moll, H. (2005). Understanding and sharing intentions: The origins of cultural cognition. Behavioral and Brain Sciences, 28(5), 675–691. https://doi.org/10.1017/S0140525X05000129
Tomkins, S. S. (1992). Affect, imagery, consciousness, Vol. 1: The positive affects. Springer Publishing Co. https://doi.org/10.1037/14351-000
Tononi, G. (2004). An information integration theory of consciousness. BMC Neuroscience, 5(1), 42. https://doi.org/10.1186/1471-2202-5-42
Tononi, G., Boly, M., Massimini, M., & Koch, C. (2016). Integrated information theory: From consciousness to its physical substrate. Nature Reviews Neuroscience, 17(7), 450–461. https://doi.org/10.1038/nrn.2016.44
Tononi, G., Sporns, O., & Edelman, G. M. (1994). A measure for brain complexity: Relating functional segregation and integration in the nervous system. Proceedings of the National Academy of Sciences, 91(11), 5033–5037. https://doi.org/10.1073/pnas.91.11.5033
Treisman, A. (1996). The binding problem. Current Opinion in Neurobiology, 6(2), 171–178. https://doi.org/10.1016/S0959-4388(96)80070-5
Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136. https://doi.org/10.1016/0010-0285(80)90005-5
Tuckman, B. W. (1965). Developmental sequence in small groups. Psychological Bulletin, 63(6), 384–399. https://doi.org/10.1037/h0022100
Turkle, S. (2011). Alone together: Why we expect more from technology and less from each other. Basic Books.
United Nations. (2015, 2024). Transforming our world: The 2030 Agenda for Sustainable Development | Department of Economic and Social Affairs. https://sdgs.un.org/2030agenda
Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science and human experience (14. print.). MIT Press.
Varela, F., Lachaux, J.-P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2(4), 229–239. https://doi.org/10.1038/35067550
Vinge, V. (1993, Dezember 1). The coming technological singularity: How to survive in the post-human era. https://ntrs.nasa.gov/citations/19940022856
Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, 1, I-511-I–518. https://doi.org/10.1109/CVPR.2001.990517
Voinov, A., Kolagani, N., McCall, M. K., Glynn, P. D., Kragt, M. E., Ostermann, F. O., Pierce, S. A., & Ramu, P. (2016). Modelling with stakeholders: Next generation. Environmental Modelling & Software, 77, 196–220. https://doi.org/10.1016/j.envsoft.2015.11.016
Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 359(6380), 1146–1151. https://doi.org/10.1126/science.aap9559
Vygotskij, L. S., & Cole, M. (1981). Mind in society: The development of higher psychological processes (Nachdr.). Harvard Univ. Press.
Wandell, B. A., Dumoulin, S. O., & Brewer, A. A. (2007). Visual Field Maps in Human Cortex. Neuron, 56(2), 366–383. https://doi.org/10.1016/j.neuron.2007.10.012
Ward, T. B. (1994). Structured Imagination: The Role of Category Structure in Exemplar Generation. Cognitive Psychology, 27(1), 1–40. https://doi.org/10.1006/cogp.1994.1010
Watson, J. B. (1913). Psychology as the behaviorist views it. Psychological Review, 20(2), 158–177. https://doi.org/10.1037/h0074428
Waytz, A., & Mitchell, J. P. (2011). Two Mechanisms for Simulating Other Minds: Dissociations Between Mirroring and Self-Projection. Current Directions in Psychological Science, 20(3), 197–200. https://doi.org/10.1177/0963721411409007
Weick, K. E., & Sutcliffe, K. M. (2006). Mindfulness and the quality of organizational attention. Organization Science, 17(4), 514–524. https://doi.org/10.1287/orsc.1060.0196
Whitehouse, H. (2004). Modes of religiosity: A cognitive theory of religious transmission. AltaMira Press.
Wilson, H. J., & Daugherty, P. R. (2018). Human + machine: Reimagining work in the age of AI. Harvard Business Review Press.
Wimsatt, W. C. (2006). Reductionism and its heuristics: Making methodological reductionism honest. Synthese, 151(3), 445–475. https://doi.org/10.1007/s11229-006-9017-0
Wimsatt, W. C. (2007). Re-engineering philosophy for limited beings: Piecewise approximations to reality. Harvard University Press.
Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767–791. https://doi.org/10.1016/S1388-2457(02)00057-3
Wooldridge, M. J. (2009). An introduction to multiagent systems (2nd ed). John Wiley & Sons.
Wu, H.-K., Lee, S. W.-Y., Chang, H.-Y., & Liang, J.-C. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & Education, 62, 41–49. https://doi.org/10.1016/j.compedu.2012.10.024
Yampolskiy, R. V. (2016). Artificial superintelligence: A futuristic approach. CRC Press.
Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated Machine Learning: Concept and Applications. ACM Trans. Intell. Syst. Technol., 10(2), 12:1-12:19. https://doi.org/10.1145/3298981
Zeiler, M. D., & Fergus, R. (2014). Visualizing and Understanding Convolutional Networks. In D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Hrsg.), Computer Vision – ECCV 2014 (Bd. 8689, S. 818–833). Springer International Publishing. https://doi.org/10.1007/978-3-319-10590-1_53
Zeman, A., Dewar, M., & Della Sala, S. (2015). Lives without imagery – Congenital aphantasia. Cortex, 73, 378–380. https://doi.org/10.1016/j.cortex.2015.05.019
Zhang, J., & Norvilitis, J. M. (2002). Measuring Chinese Psychological Well-Being With Western Developed Instruments. Journal of Personality Assessment, 79(3), 492–511. https://doi.org/10.1207/S15327752JPA7903_06
Žižek, S. (2016). Lacan: Eine Einführung (K. Genschow & A. Roesler, Übers.; 5. Auflage, Deutsche Erstausgabe). FISCHER Taschenbuch.
Zuboff, S. (2019). The age of surveillance capitalism: The fight for a human future at the new frontier of power (First edition). PublicAffairs.
Zuiderveen Borgesius, F. J., Trilling, D., Möller, J., Bodó, B., De Vreese, C. H., & Helberger, N. (2016). Should we worry about filter bubbles? Internet Policy Review, 5(1). https://doi.org/10.14763/2016.1.401
Zylinska, J. (2020). AI Art: Machine Visions and Warped Dreams (First edition). Open Humanities Press.