Literaturverzeichnis

Agrawal, A. (1995). Dismantling the Divide Between Indigenous and Scientific Knowledge. Development and Change26(3), 413–439. https://doi.org/10.1111/j.1467-7660.1995.tb00560.x

Ahamer, J., & Lechleitner, G. (Hrsg.). (2007). Um-Feld-Forschung: Erfahrungen, Erlebnisse, Ergebnisse. OAW.

Ahishakiye, E., Van Gijzen, M. B., Tumwiine, J., Wario, R., & Obungoloch, J. (2021). A survey on deep learning in medical image reconstruction. Intelligent Medicine1(3), 118–127. https://doi.org/10.1016/j.imed.2021.03.003

Ahmed, S. (2004). The cultural politics of emotion (Second edition). Edinburgh University Press.

Ajoudani, A., Zanchettin, A. M., Ivaldi, S., Albu-Schäffer, A., Kosuge, K., & Khatib, O. (2018). Progress and prospects of the human–robot collaboration. Autonomous Robots42(5), 957–975. https://doi.org/10.1007/s10514-017-9677-2

al-Haytham, I., & Smith, A. M. (2006). Alhacen on the Principles of Reflection: A Critical Edition, with English Translation and Commentary, of Books 4 and 5 of Alhacen’s „De Aspectibus“, the Medieval Latin Version of Ibn al-Haytham’s „Kitāb al-Manāẓir“. Volume Two: English Translation. Transactions of the American Philosophical Society96(3), 289. https://doi.org/10.2307/20020403

Annette Arlander. (2023). Explorations with an Ash Treehttps://doi.org/10.22501/hub.2137521

Arlander, A. (2020, März 4). Tree Performance with a Henkel‘s Yellowood [An international database for artistic research]. Research Catalogue. https://www.researchcatalogue.net/profile/show-work?work=815793

Arthur, W. B., Durlauf, S. N., & Lane, D. A. (Hrsg.). (1997). The economy as an evolving complex system. 2 / eds. W. Brian Arthur (1. print). Addison-Wesley.

Baars, B. J. (1988). A Cognitive Theory of Consciousness. Cambridge University Press.

Bail, C. A., Argyle, L. P., Brown, T. W., Bumpus, J. P., Chen, H., Hunzaker, M. B. F., Lee, J., Mann, M., Merhout, F., & Volfovsky, A. (2018). Exposure to opposing views on social media can increase political polarization. Proceedings of the National Academy of Sciences115(37), 9216–9221. https://doi.org/10.1073/pnas.1804840115

Bailenson, J. (2018). Experience on demand: What virtual reality is, how it works, and what it can do. W.W. Norton & Company.

Bailey, K. D. (1990). Social entropy theory. State University of New York Press.

Bakshy, E., Messing, S., & Adamic, L. A. (2015). Exposure to ideologically diverse news and opinion on Facebook. Science348(6239), 1130–1132. https://doi.org/10.1126/science.aaa1160

Balconi, M., & Vanutelli, M. E. (2017). Interbrains cooperation: Hyperscanning and self-perception in joint actions. Journal of Clinical and Experimental Neuropsychology39(6), 607–620. https://doi.org/10.1080/13803395.2016.1253666

Barsalou, L. W. (2008). Grounded Cognition. Annual Review of Psychology59(1), 617–645. https://doi.org/10.1146/annurev.psych.59.103006.093639

Bartlett, F. C. (1995). Remembering: A study in experimental and social psychology. Cambridge University Press.

Bar-Yam, Y. (1997). Dynamics of complex systems (Nachdr.). Perseus Books.

Bastos, A. M., Vezoli, J., Bosman, C. A., Schoffelen, J.-M., Oostenveld, R., Dowdall, J. R., De Weerd, P., Kennedy, H., & Fries, P. (2015). Visual Areas Exert Feedforward and Feedback Influences through Distinct Frequency Channels. Neuron85(2), 390–401. https://doi.org/10.1016/j.neuron.2014.12.018

Baum, S. (2016). On the Promotion of Safe and Socially Beneficial Artificial Intelligence (SSRN Scholarly Paper 2816323). https://doi.org/10.2139/ssrn.2816323

Bedau, M. A. (1997). Weak Emergence. Noûs31(s11), 375–399. https://doi.org/10.1111/0029-4624.31.s11.17

Bedau, M. A., & Humphreys, P. (Hrsg.). (2008). Emergence: Contemporary Readings in Philosophy and Science. The MIT Press. https://doi.org/10.7551/mitpress/9780262026215.001.0001

Beer, R. D. (1995). A dynamical systems perspective on agent-environment interaction. Artificial Intelligence72(1), 173–215. https://doi.org/10.1016/0004-3702(94)00005-L

Belfiore, E., & Bennett, O. (2007). RETHINKING THE SOCIAL IMPACTS OF THE ARTS. International Journal of Cultural Policy13(2), 135–151. https://doi.org/10.1080/10286630701342741

Berger, P. L. (1967). The sacred canopy: Elements of a sociological theory of religion. Anchor Books.

Berger, P. L., Luckmann, T., & Berger, P. L. (1977). Die gesellschaftliche Konstruktion der Wirklichkeit: Eine Theorie der Wissenssoziologie (5. Aufl). S. Fischer.

Beuys, J. (2002). Sprechen über Deutschland: Rede vom 20. November 1985 in den Münchner Kammerspielen. FIU-Verl.

Billinghurst, M., Clark, A., & Lee, G. (2015). A Survey of Augmented Reality. Foundations and Trends® in Human–Computer Interaction8(2–3), 73–272. https://doi.org/10.1561/1100000049

Bishop, C. (2012). Artificial hells: Participatory art and the politics of spectatorship. Verso Books.

Blasius, B., Huppert, A., & Stone, L. (1999). Complex dynamics and phase synchronization in spatially extended ecological systems. Nature399(6734), 354–359. https://doi.org/10.1038/20676

Blumer, H. (1969). Symbolic interactionism: Perspective and method. Prentice-Hall.

Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., & Zhou, C. S. (2002). The synchronization of chaotic systems. Physics Reports366(1), 1–101. https://doi.org/10.1016/S0370-1573(02)00137-0

Boden, M. A. (2004). The creative mind: Myths and mechanisms (2nd ed). Routledge.

Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press. https://doi.org/10.1093/oso/9780195131581.001.0001

Bonney, R., Shirk, J. L., Phillips, T. B., Wiggins, A., Ballard, H. L., Miller-Rushing, A. J., & Parrish, J. K. (2014). Next Steps for Citizen Science. Science343(6178), 1436–1437. https://doi.org/10.1126/science.1251554

Boorstin, D. J. (1962). The image: A guide to pseudo-events in America (Reprint). Vintage books.

Born, G., & Barry, A. (2010). ART-SCIENCE: From public understanding to public experiment. Journal of Cultural Economy3(1), 103–119. https://doi.org/10.1080/17530351003617610

Bostrom, N. (2014). Superintelligence: Paths, dangers, strategies (First edition). Oxford University Press.

Botsman, R., & Rogers, R. (2010). What’s Mine Is Yours: The Rise of Collaborative Consumption. Harper Collins.

Bowen, M. (1978). Family therapy in clinical practice. J. Aronson.

Brillouin, L. (1953). The Negentropy Principle of Information. Journal of Applied Physics24(9), 1152–1163. https://doi.org/10.1063/1.1721463

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., … Amodei, D. (2020). Language Models are Few-Shot Learners (Version 4). arXiv. https://doi.org/10.48550/ARXIV.2005.14165

Bruin, L. de, Newen, A., & Gallagher, S. (Hrsg.). (2018). The Oxford Handbook of 4E Cognition. Oxford University Press.

Bruner, J. (1991). The Narrative Construction of Reality. Critical Inquiry18(1), 1–21. https://doi.org/10.1086/448619

Brynjolfsson, E., & McAfee, A. (2016). The second machine age: Work, progress, and prosperity in a time of brilliant technologies (First published as a Norton paperback). W. W. Norton & Company.

Bryson, J. J. (2020). The Artificial Intelligence of the Ethics of Artificial Intelligence: An Introductory Overview for Law and Regulation. In M. D. Dubber, F. Pasquale, & S. Das (Hrsg.), The Oxford Handbook of Ethics of AI (S. 1–25). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780190067397.013.1

Bucher, T. (2018). If…Then (Bd. 1). Oxford University Press. https://doi.org/10.1093/oso/9780190493028.001.0001

Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience10(3), 186–198. https://doi.org/10.1038/nrn2575

Bunge, M. (2004). Emergence and Convergence: Qualitative Novelty and the Unity of Knowledge. University of Toronto Press. https://doi.org/10.3138/9781442674356

Buolamwini, J., & Gebru, T. (2018). Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. In S. A. Friedler & C. Wilson (Hrsg.), Proceedings of the 1st Conference on Fairness, Accountability and Transparency (Bd. 81, S. 77–91). PMLR. https://proceedings.mlr.press/v81/buolamwini18a.html

Buzsáki, G., & Draguhn, A. (2004). Neuronal Oscillations in Cortical Networks. Science304(5679), 1926–1929. https://doi.org/10.1126/science.1099745

Camazine, S. (Hrsg.). (2003). Self-organization in biological systems (2. print., and 1. paperback print). Princeton Univ. Press.

Canny, J. (1986). A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine IntelligencePAMI-8(6), 679–698. https://doi.org/10.1109/TPAMI.1986.4767851

Carr, N. G. (2015). The glass cage: How our computers are changing us. Norton & Company.

Castells, M. (2009). The Rise of the Network Society (1. Aufl.). Wiley. https://doi.org/10.1002/9781444319514

Castoriadis, C. (1987). The Imaginary Institution of Society. MIT Press.

Cavagna, A., Conti, D., Creato, C., Del Castello, L., Giardina, I., Grigera, T. S., Melillo, S., Parisi, L., & Viale, M. (2016). Dynamic scaling in natural swarmshttps://doi.org/10.48550/ARXIV.1611.08201

Chalmers, D. (1995). Facing up to the problem of consciousness. Journal of Consciousness Studies2(3), 200–219.

Chalmers, D. J. (1996). The Conscious Mind: In Search of a Fundamental Theory (2nd edition). Oxford University Press.

Chalmers, D. J. (2006). Strong and weak emergence. In P. Clayton & P. Davies (Hrsg.), The re-emergence of emergence: The emergentist hypothesis from science to religion. Oxford University Press.

Chalmers, D. J. (2010). The Singularity: A Philosophical Analysis. Journal of Consciousness Studies17(9–10), 9–10.

Chartrand, T. L., & Bargh, J. A. (1999). The chameleon effect: The perception–behavior link and social interaction. Journal of Personality and Social Psychology76(6), 893–910. https://doi.org/10.1037/0022-3514.76.6.893

Chemero, A. (2011). Radical embodied cognitive science (First MIT Press paperback edition). MIT Press.

Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework for contrastive learning of visual representations. Proceedings of the 37th International Conference on Machine Learning.

Clark, A. (2003). Natural-born cyborgs: Minds, technologies, and the future of human intelligence. Oxford University Press.

Clark, A. (2008). Supersizing the Mind: Embodiment, Action, and Cognitive Extension (1. Aufl.). Oxford University PressNew York. https://doi.org/10.1093/acprof:oso/9780195333213.001.0001

Clark, A., & Chalmers, D. (1998). The Extended Mind. Analysis58(1), 7–19. https://doi.org/10.1093/analys/58.1.7

Contractor, N. S., Wasserman, S., & Faust, K. (2006). Testing multitheoretical, multilevel hypotheses about organizational networks: An analytic framework and empirical example. The Academy of Management Review31(3), 681–703. https://doi.org/10.2307/20159236

Corballis, M. C. (2014). Left Brain, Right Brain: Facts and Fantasies. PLoS Biology12(1), e1001767. https://doi.org/10.1371/journal.pbio.1001767

Cosmides, L., & Tooby, J. (1994). Beyond intuition and instinct blindness: Toward an evolutionarily rigorous cognitive science. Cognition50(1–3), 41–77. https://doi.org/10.1016/0010-0277(94)90020-5

Craver, C. F., & Bechtel, W. (2007). Top-down Causation Without Top-down Causes. Biology & Philosophy22(4), 547–563. https://doi.org/10.1007/s10539-006-9028-8

Crick, F., & Koch, C. (1990). Toward a Neurobiological Theory of Consciousness. Seminars in the Neurosciences2, 263–275.

Damasio, A. R. (1994). Descartes’ error: Emotion, reason and the human brain (18. Druck). Quill.

Damasio, A. R. (2010). Self comes to mind: Constructing the conscious brain (1. ed). Pantheon Books.

Davidson, R. J., & McEwen, B. S. (2012). Social influences on neuroplasticity: Stress and interventions to promote well-being. Nature Neuroscience15(5), 689–695. https://doi.org/10.1038/nn.3093

De Jaegher, H., & Di Paolo, E. (2007). Participatory sense-making: An enactive approach to social cognition. Phenomenology and the Cognitive Sciences6(4), 485–507. https://doi.org/10.1007/s11097-007-9076-9

De Souza E Silva, A. (2006). From Cyber to Hybrid: Mobile Technologies as Interfaces of Hybrid Spaces. Space and Culture9(3), 261–278. https://doi.org/10.1177/1206331206289022

De Waal, M., & De Lange, M. (2019). Introduction—The Hacker, the City and Their Institutions: From Grassroots Urbanism to Systemic Change. In M. De Lange & M. De Waal (Hrsg.), The Hackable City (S. 1–22). Springer Singapore. https://doi.org/10.1007/978-981-13-2694-3_1

Decety, J., Bartal, I. B.-A., Uzefovsky, F., & Knafo-Noam, A. (2016). Empathy as a driver of prosocial behaviour: Highly conserved neurobehavioural mechanisms across species. Philosophical Transactions of the Royal Society B: Biological Sciences371(1686), 20150077. https://doi.org/10.1098/rstb.2015.0077

Dehaene, S., & Changeux, J.-P. (2011). Experimental and Theoretical Approaches to Conscious Processing. Neuron70(2), 200–227. https://doi.org/10.1016/j.neuron.2011.03.018

Dehaene, S., Charles, L., King, J.-R., & Marti, S. (2014). Toward a computational theory of conscious processing. Current Opinion in Neurobiology25, 76–84. https://doi.org/10.1016/j.conb.2013.12.005

Dehaene, S., Lau, H., & Kouider, S. (2017). What is consciousness, and could machines have it? Science (New York, N.Y.)358(6362), 486–492. https://doi.org/10.1126/science.aan8871

Dellermann, D., Calma, A., Lipusch, N., Weber, T., Weigel, S., & Ebel, P. (2021). The future of human-AI collaboration: A taxonomy of design knowledge for hybrid intelligence systems (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2105.03354

Dennett, D. C. (2018). From bacteria to Bach and back: The evolution of minds (Fist published as a Norton paperback). W. W. Norton & Company.

DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012). How Does the Brain Solve Visual Object Recognition? Neuron73(3), 415–434. https://doi.org/10.1016/j.neuron.2012.01.010

Dignum, V. (2019). Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way. Springer International Publishing. https://doi.org/10.1007/978-3-030-30371-6

Dikker, S., Wan, L., Davidesco, I., Kaggen, L., Oostrik, M., McClintock, J., Rowland, J., Michalareas, G., Van Bavel, J. J., Ding, M., & Poeppel, D. (2017). Brain-to-Brain Synchrony Tracks Real-World Dynamic Group Interactions in the Classroom. Current Biology27(9), 1375–1380. https://doi.org/10.1016/j.cub.2017.04.002

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2020). An Image is Worth 16×16 Words: Transformers for Image Recognition at Scale (Version 2). arXiv. https://doi.org/10.48550/ARXIV.2010.11929

Dubois, E., & Blank, G. (2018). The echo chamber is overstated: The moderating effect of political interest and diverse media. Information, Communication & Society21(5), 729–745. https://doi.org/10.1080/1369118X.2018.1428656

Duit, R. (1991). On the role of analogies and metaphors in learning science. Science Education75(6), 649–672. https://doi.org/10.1002/sce.3730750606

Dumas, G., & Fairhurst, M. T. (o. J.). Reciprocity and alignment: Quantifying coupling in dynamic interactions. Royal Society Open Science8(5), 210138. https://doi.org/10.1098/rsos.210138

Dumas, G., Nadel, J., Soussignan, R., Martinerie, J., & Garnero, L. (2010). Inter-Brain Synchronization during Social Interaction. PLoS ONE5(8), e12166. https://doi.org/10.1371/journal.pone.0012166

Dunbar, R. I. M. (2018). The Anatomy of Friendship. Trends in Cognitive Sciences22(1), 32–51. https://doi.org/10.1016/j.tics.2017.10.004

Durkheim, E., & Fields, K. E. (1912). The elementary forms of religious life. Free Press.

Elgammal, A., Liu, B., Elhoseiny, M., & Mazzone, M. (2017). CAN: Creative Adversarial Networks, Generating „Art“ by Learning About Styles and Deviating from Style Norms (Version 1). arXiv. https://doi.org/10.48550/ARXIV.1706.07068

Eliade, M. (1987). The sacred and the profane: The nature of religion ; [the groundbreaking work by one of the greatest authorities on myth, symbol, and ritual] (W. R. Trask, Übers.). Harcourt, Brace.

Ellis, G. F. R. (2012). Top-down causation and emergence: Some comments on mechanisms. Interface Focus2(1), 126–140. https://doi.org/10.1098/rsfs.2011.0062

Epstein, J. M., & Axtell, R. (with 2050 Project). (1996). Growing artificial societies: Social science from the bottom up. Brookings Institution Press.

Evans, D. (1996). An introductory dictionary of Lacanian psychoanalysis. Routledge.

Featherstone, M., Lash, S., Robertson, R., & Robertson, R. (1995). Glocalization: Time-Space and Homogeneity-Heterogeneity. 25–44. https://doi.org/10.4135/9781446250563.n2

Feenberg, A. (2002). Transforming technology: A critical theory revisited. Oxford University Press.

Fehr, E., & Fischbacher, U. (2003). The nature of human altruism. Nature425(6960), 785–791. https://doi.org/10.1038/nature02043

Festinger, L. (1957). A Theory of Cognitive Dissonance. Stanford University Press. https://doi.org/10.1515/9781503620766

Fink, B. (1997). The Lacanian subject: Between language and jouissance (3. print., and 1. paperback print). Princeton Univ. Press.

Fishkin, J. S. (2018). Democracy When the People Are Thinking (Bd. 1). Oxford University Press. https://doi.org/10.1093/oso/9780198820291.001.0001

Flaxman, S., Goel, S., & Rao, J. M. (2016). Filter Bubbles, Echo Chambers, and Online News Consumption. Public Opinion Quarterly80(S1), 298–320. https://doi.org/10.1093/poq/nfw006

Fletcher, R., & Nielsen, R. K. (2018). Are people incidentally exposed to news on social media? A comparative analysis. New Media & Society20(7), 2450–2468. https://doi.org/10.1177/1461444817724170

Floridi, L. (2014). The 4th revolution: How the infosphere is reshaping human reality (First edition). Oxford University Press.

Foerster, J. N., Assael, Y. M., de Freitas, N., & Whiteson, S. (2016). Learning to Communicate with Deep Multi-Agent Reinforcement Learning (Version 2). arXiv. https://doi.org/10.48550/ARXIV.1605.06676

Forrester, J. W. (1971). World Dynamics. Wright-Allen Press.

Fries, P. (2015). Rhythms for Cognition: Communication through Coherence. Neuron88(1), 220–235. https://doi.org/10.1016/j.neuron.2015.09.034

Frigg, R., & Werndl, C. (2011). Entropy: Aguide for the Perplexed. In C. Beisbart & S. Hartmann (Hrsg.), Probabilities in Physics (1. Aufl., S. 115–142). Oxford University PressOxford. https://doi.org/10.1093/acprof:oso/9780199577439.003.0005

Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences360(1456), 815–836. https://doi.org/10.1098/rstb.2005.1622

Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience11(2), 127–138. https://doi.org/10.1038/nrn2787

Fromm, J. (2005). Types and Forms of Emergence (Version 1). arXiv. https://doi.org/10.48550/ARXIV.NLIN/0506028

Gardner, H. (2011). Frames of mind: The theory of multiple intelligences. Basic Books.

Garton Ash, T. (2016). Redefreiheit: Prinzipien für eine vernetzte Welt (H. Dierlamm & T. Pfeiffer, Übers.). Carl Hanser Verlag.

Gentner, D., & Holyoak, K. J. (1997). Reasoning and learning by analogy: Introduction. American Psychologist52(1), 32–34. https://doi.org/10.1037/0003-066X.52.1.32

Geschke, D., Lorenz, J., & Holtz, P. (2019). The triple‐filter bubble: Using agent‐based modelling to test a meta‐theoretical framework for the emergence of filter bubbles and echo chambers. British Journal of Social Psychology58(1), 129–149. https://doi.org/10.1111/bjso.12286

Gibbs, Jr, R. W. (2005). Embodiment and Cognitive Science (1. Aufl.). Cambridge University Press. https://doi.org/10.1017/CBO9780511805844

Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology12(3), 306–355. https://doi.org/10.1016/0010-0285(80)90013-4

Gigerenzer, G., & Todd, P. M. (2001). Simple heuristics that make us smart (1. issued as an Oxford Univ. Press paperback). Oxford University Press.

Goertzel, B., & Pennachin, C. (Hrsg.). (2007). Artificial general intelligence. Springer.

Goldberg, R. (2011). Performance art: From Futurism to the present (3. ed). Thames & Hudson.

Goldstein, J. (1999). Emergence as a Construct: History and Issues. Emergence1(1), 49–72. https://doi.org/10.1207/s15327000em0101_4

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Networks (arXiv:1406.2661). arXiv. http://arxiv.org/abs/1406.2661

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and Harnessing Adversarial Examples (arXiv:1412.6572). arXiv. http://arxiv.org/abs/1412.6572

Green, A. E., Kraemer, D. J. M., Fugelsang, J. A., Gray, J. R., & Dunbar, K. N. (2010). Connecting Long Distance: Semantic Distance in Analogical Reasoning Modulates Frontopolar Cortex Activity. Cerebral Cortex20(1), 70–76. https://doi.org/10.1093/cercor/bhp081

Grønsund, T., & Aanestad, M. (2020). Augmenting the algorithm: Emerging human-in-the-loop work configurations. The Journal of Strategic Information Systems29(2), 101614. https://doi.org/10.1016/j.jsis.2020.101614

Gros, C. (2015). Complex and Adaptive Dynamical Systems: A Primer. Springer International Publishing. https://doi.org/10.1007/978-3-319-16265-2

Grossberg, S. (2013). Adaptive Resonance Theory: How a brain learns to consciously attend, learn, and recognize a changing world. Neural Networks37, 1–47. https://doi.org/10.1016/j.neunet.2012.09.017

Gunkel, D. J. (2019). An introduction to communication and artificial intelligence. Polity Press.

Guston, D. H. (2014). Understanding ‘anticipatory governance’. Social Studies of Science44(2), 218–242. https://doi.org/10.1177/0306312713508669

Ha, D., Dai, A. M., & Le, Q. V. (2022, Juli 21). HyperNetworks. International Conference on Learning Representations. https://openreview.net/forum?id=rkpACe1lx

Hansen, M. B. N. (2006). New philosophy for new media. MIT.

Harlan, V., Rappmann, R., Schata, P., & Beuys, J. (1976). Soziale Plastik: Materialien zu Joseph Beuys. Achberger Verlagsanst.

Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-Inspired Artificial Intelligence. Neuron95(2), 245–258. https://doi.org/10.1016/j.neuron.2017.06.011

Hasson, U., Ghazanfar, A. A., Galantucci, B., Garrod, S., & Keysers, C. (2012). Brain-to-brain coupling: A mechanism for creating and sharing a social world. Trends in Cognitive Sciences16(2), 114–121. https://doi.org/10.1016/j.tics.2011.12.007

Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., & Malach, R. (2004). Intersubject Synchronization of Cortical Activity During Natural Vision. Science303(5664), 1634–1640. https://doi.org/10.1126/science.1089506

Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex. Science293(5539), 2425–2430. https://doi.org/10.1126/science.1063736

Hayles, N. K. (2012). How we think: Digital media and contemporary technogenesis. The University of Chicago Press.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition (Version 1). arXiv. https://doi.org/10.48550/ARXIV.1512.03385

Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory (1. issued in paperback). Routledge.

Helbing, D. (2013). Globally networked risks and how to respond. Nature497(7447), 51–59. https://doi.org/10.1038/nature12047

Helbing, D., Frey, B. S., Gigerenzer, G., Hafen, E., Hagner, M., Hofstetter, Y., Van Den Hoven, J., Zicari, R. V., & Zwitter, A. (2019). Will Democracy Survive Big Data and Artificial Intelligence? 73–98. https://doi.org/10.1007/978-3-319-90869-4_7

Helliwell, J. F., Layard, R., Sachs, J. D., & Neve, J.-E. D. (2020, März 20). World Happiness Report 2020https://worldhappiness.report/ed/2020/

Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? The Behavioral and Brain Sciences33(2–3), 61–83; discussion 83-135. https://doi.org/10.1017/S0140525X0999152X

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T., & Kingsbury, B. (2012). Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Processing Magazine29(6), 82–97. https://doi.org/10.1109/MSP.2012.2205597

Hipp, J. F., Engel, A. K., & Siegel, M. (2011). Oscillatory Synchronization in Large-Scale Cortical Networks Predicts Perception. Neuron69(2), 387–396. https://doi.org/10.1016/j.neuron.2010.12.027

Hoffman, D. D. (2019). The case against reality: Why evolution hid the truth from our eyes (First edition). W.W. Norton & Company, Independent Publishers since 1923.

Hoffmann, D. L., Standish, C. D., García-Diez, M., Pettitt, P. B., Milton, J. A., Zilhão, J., Alcolea-González, J. J., Cantalejo-Duarte, P., Collado, H., De Balbín, R., Lorblanchet, M., Ramos-Muñoz, J., Weniger, G.-Ch., & Pike, A. W. G. (2018). U-Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art. Science359(6378), 912–915. https://doi.org/10.1126/science.aap7778

Hollan, J., Hutchins, E., & Kirsh, D. (2000). Distributed cognition: Toward a new foundation for human-computer interaction research. ACM Transactions on Computer-Human Interaction7(2), 174–196. https://doi.org/10.1145/353485.353487

Holland, J. H. (2000). Emergence: From chaos to order. Oxford Univ. Press.

Holling, C. S. (Hrsg.). (1978). Adaptive environmental assessment and management. Workshop on Adaptive Assessment of Ecological Policies, [Laxenburg, Austria] : Chichester ; New York. International Institute for Applied Systems Analysis ; Wiley.

Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial Intelligence in Education: Promises and Implications for Teaching and Learning | Welcome to TeachOnline. Boston: Centre for Curriculum Redesign. https://teachonline.ca/tools-trends/must-read-books-on-online-learning/artificial-intelligence-education-promises-and-implications-teaching-and-learning

Holyoak, K. J., & Thagard, P. (1994). Mental Leaps: Analogy in Creative Thought. The MIT Press. https://doi.org/10.7551/mitpress/4549.001.0001

Humphreys, P. (2016). Emergence: A Philosophical Account. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780190620325.001.0001

Husserl, E. (1966). Analysen Zur Passiven Synthesis: Aus Vorlesungs- Und Forschungsmanuskripten 1918-1926. Martinus Nijhoff.

Hutchins, E. (2006). Cognition in the wild (8. pr). MIT Press.

Iyaniwura, S. A., & Ward, M. J. (2020). Synchrony and Oscillatory Dynamics for a 2-D PDE-ODE Model of Diffusion-Sensing with Small Signaling Compartments (arXiv:2007.08765). arXiv. http://arxiv.org/abs/2007.08765

Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons61(4), 577–586. https://doi.org/10.1016/j.bushor.2018.03.007

Jobin, A., Ienca, M., & Vayena, E. (2019). The global landscape of AI ethics guidelines. Nature Machine Intelligence1(9), 389–399. https://doi.org/10.1038/s42256-019-0088-2

Kahneman, D. (2011). Thinking, fast and slow (S. 499). Farrar, Straus and Giroux.

Kamar, E., Hacker, S., & Horvitz, E. (2012). Combining human and machine intelligence in large-scale crowdsourcing. Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems – Volume 1, 467–474.

Kandel, E. R. (Hrsg.). (2013). Principles of neural science (5th ed). McGraw-Hill.

Karpathy, A., Johnson, J., & Fei-Fei, L. (2015). Visualizing and Understanding Recurrent Networks (arXiv:1506.02078). arXiv. http://arxiv.org/abs/1506.02078

Kasparov, G. K., & Greengard, M. (2017). Deep thinking: Where machine intelligence ends and human creativity begins(First edition). PublicAffairs, an imprint of Perseus Books, LLC.

Kauffman, S. A. (1993). The Origins of Order: Self-Organization and Selection in Evolution. Oxford University PressNew York, NY. https://doi.org/10.1093/oso/9780195079517.001.0001

Kelso, J. A. S. (1995). Dynamic patterns: The self-organization of brain and behavior (3.print). MIT Press.

Kenter, J. O., O’Brien, L., Hockley, N., Ravenscroft, N., Fazey, I., Irvine, K. N., Reed, M. S., Christie, M., Brady, E., Bryce, R., Church, A., Cooper, N., Davies, A., Evely, A., Everard, M., Fish, R., Fisher, J. A., Jobstvogt, N., Molloy, C., … Williams, S. (2015). What are shared and social values of ecosystems? Ecological Economics111, 86–99. https://doi.org/10.1016/j.ecolecon.2015.01.006

Kitchin, R. (2014). The Data Revolution: Big Data, Open Data, Data Infrastructures & Their Consequences. SAGE Publications Ltd. https://doi.org/10.4135/9781473909472

Klein, J. T. (1993). Interdisciplinarity: History, theory, and practice (3. print). Wayne State Univ. Press.

Konvalinka, I., & Roepstorff, A. (2012). The two-brain approach: How can mutually interacting brains teach us something about social interaction? Frontiers in Human Neuroscience6https://doi.org/10.3389/fnhum.2012.00215

Kosslyn, S. M. (1980). Image and mind. Harvard University Press.

Kosslyn, S. M., Ganis, G., & Thompson, W. L. (2001). Neural foundations of imagery. Nature Reviews Neuroscience2(9), 635–642. https://doi.org/10.1038/35090055

Kosslyn, S. M., Thompson, W. L., & Ganis, G. (2006). The Case for Mental Imagery. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195179088.001.0001

Krakauer, J. W., Ghazanfar, A. A., Gomez-Marin, A., MacIver, M. A., & Poeppel, D. (2017). Neuroscience Needs Behavior: Correcting a Reductionist Bias. Neuron93(3), 480–490. https://doi.org/10.1016/j.neuron.2016.12.041

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems25https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

Kurzweil, R. (2006). The singularity is near: When humans transcend biology. Penguin Books.

Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic program induction. Science (New York, N.Y.)350(6266), 1332–1338. https://doi.org/10.1126/science.aab3050

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building machines that learn and think like people. Behavioral and Brain Sciences40, e253. https://doi.org/10.1017/S0140525X16001837

Lakoff, G., & Johnson, M. (20). Philosophy in the flesh: The embodied mind and its challenge to Western thought(Nachdr.). Basic Books.

Laskar, J., Boué, G., & Correia, A. C. M. (2012). Tidal dissipation in multi-planet systems and constraints on orbit fitting. Astronomy & Astrophysics538, A105. https://doi.org/10.1051/0004-6361/201116643

Launay, J., Tarr, B., & Dunbar, R. I. M. (2016). Synchrony as an Adaptive Mechanism for Large‐Scale Human Social Bonding. Ethology122(10), 779–789. https://doi.org/10.1111/eth.12528

LeCun, Y. (o. J.). A Path Towards Autonomous Machine Intelligence Version 0.9.2, 2022-06-27.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature521(7553), 436–444. https://doi.org/10.1038/nature14539

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE86(11), 2278–2324. https://doi.org/10.1109/5.726791

Levin, S. A. (1998). Ecosystems and the Biosphere as Complex Adaptive Systems. Ecosystems1(5), 431–436. https://doi.org/10.1007/s100219900037

Lévy, P. (1997). Collective intelligence: Mankind’s emerging world in cyberspace. Plenum Trade.

Licklider, J. C. R. (1960). Man-Computer Symbiosis. IRE Transactions on Human Factors in ElectronicsHFE-1(1), 4–11. https://doi.org/10.1109/THFE2.1960.4503259

Liu, H.-Y., Kobernus, M., Broday, D., & Bartonova, A. (2014). A conceptual approach to a citizens’ observatory – supporting community-based environmental governance. Environmental Health13(1), 107. https://doi.org/10.1186/1476-069X-13-107

Liu, X., Faes, L., Kale, A. U., Wagner, S. K., Fu, D. J., Bruynseels, A., Mahendiran, T., Moraes, G., Shamdas, M., Kern, C., Ledsam, J. R., Schmid, M. K., Balaskas, K., Topol, E. J., Bachmann, L. M., Keane, P. A., & Denniston, A. K. (2019). A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: A systematic review and meta-analysis. The Lancet Digital Health1(6), e271–e297. https://doi.org/10.1016/S2589-7500(19)30123-2

Lizier, J. T., Prokopenko, M., & Zomaya, A. Y. (2014). A Framework for the Local Information Dynamics of Distributed Computation in Complex Systems. In M. Prokopenko (Hrsg.), Guided Self-Organization: Inception (Bd. 9, S. 115–158). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-53734-9_5

Lorenz, E. N. (1963). Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences20(2), 130–141. https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

Lowe, D. G. (1999). Object recognition from local scale-invariant features. Proceedings of the Seventh IEEE International Conference on Computer Vision, 1150–1157 Bd.2. https://doi.org/10.1109/ICCV.1999.790410

Luhmann, N. (1984). Soziale Systeme: Grundriß einer allgemeinen Theorie. Suhrkamp.

Malone, T. W. (2018). Superminds: The surprising power of people and computers thinking together (First edition). Little, Brown and Company.

Malone, T. W., Laubacher, R., & Dellarocas, C. N. (2009). Harnessing Crowds: Mapping the Genome of Collective Intelligence. SSRN Electronic Journalhttps://doi.org/10.2139/ssrn.1381502

Manzano, G., Galve, F., Giorgi, G. L., Hernández-García, E., & Zambrini, R. (2013). Synchronization, quantum correlations and entanglement in oscillator networks. Scientific Reports3(1), 1439. https://doi.org/10.1038/srep01439

Marks, D. F. (1973). VISUAL IMAGERY DIFFERENCES IN THE RECALL OF PICTURES. British Journal of Psychology64(1), 17–24. https://doi.org/10.1111/j.2044-8295.1973.tb01322.x

Maturana, H. R., & Varela, F. J. (1980). Autopoiesis and Cognition: The Realization of the Living (Bd. 42). Springer Netherlands. https://doi.org/10.1007/978-94-009-8947-4

McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955. AI Magazine27(4), Article 4. https://doi.org/10.1609/aimag.v27i4.1904

McGonigal, J. (2011). Reality is broken: Why games make us better and how they can change the world (S. 388). Penguin Press.

McLuhan, M. (1994). Understanding media: The extensions of man (1st MIT Press ed). MIT Press.

Metzinger, T. (2004). Being no one: The self-model theory of subjectivity (First MIT Press paperback edition). MIT Press.

Michel, C. M., & Murray, M. M. (2012). Towards the utilization of EEG as a brain imaging tool. NeuroImage61(2), 371–385. https://doi.org/10.1016/j.neuroimage.2011.12.039

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review63(2), 81–97. https://doi.org/10.1037/h0043158

Miller, J. H., & Page, S. E. (2007). Complex adaptive systems: An introduction to computational models of social life. Princeton University Press.

Minsky, M., & Papert, S. A. (1972). Perceptrons: An introduction to computational geometry (2. print. with corr). The MIT Press.

Mitchell, M. (2009). Complexity: A guided tour. Oxford University Press.

Mitchell, S. D. (2003). Biological Complexity and Integrative Pluralism (1. Aufl.). Cambridge University Press. https://doi.org/10.1017/CBO9780511802683

Montague, P. (2002). Hyperscanning: Simultaneous fMRI during Linked Social Interactions. NeuroImage16(4), 1159–1164. https://doi.org/10.1006/nimg.2002.1150

Mordvintsev, A. (2015). Inceptionism: Going Deeper into Neural Networks [Google Research Blog]. http://research.google/blog/inceptionism-going-deeper-into-neural-networks/

Morin, E. (2008). On complexity. Hampton Press.

Morowitz, H. J. (2002). The Emergence of Everything: How the World Became Complex. Oxford University Press.

Mountcastle, V. B. (1957). MODALITY AND TOPOGRAPHIC PROPERTIES OF SINGLE NEURONS OF CAT’S SOMATIC SENSORY CORTEX. Journal of Neurophysiology20(4), 408–434. https://doi.org/10.1152/jn.1957.20.4.408

Mu, Y., Guo, C., & Han, S. (2016). Oxytocin enhances inter-brain synchrony during social coordination in male adults. Social Cognitive and Affective Neuroscience11(12), 1882–1893. https://doi.org/10.1093/scan/nsw106

Mu, Y., Han, S., & Gelfand, M. J. (2017). The role of gamma interbrain synchrony in social coordination when humans face territorial threats. Social Cognitive and Affective Neuroscience12(10), 1614–1623. https://doi.org/10.1093/scan/nsx093

Musk, E. & Neuralink. (2019). An integrated brain-machine interface platform with thousands of channelshttps://doi.org/10.1101/703801

Neisser, U. (2014). Cognitive psychology (Classic edition). Psychology press.

Nersessian, N. J. (2010). Creating scientific concepts (1. MIT Press paperback ed). MIT Press.

Newen, A., De Bruin, L., & Gallagher, S. (Hrsg.). (2018). The Oxford Handbook of 4E Cognition (1. Aufl.). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780198735410.001.0001

Nissenbaum, H. (2009). Privacy in Context: Technology, Policy, and the Integrity of Social Life. Stanford University Press.

Nonaka, I., & Takeuchi, H. (1995). The knowledge-creating company: How Japanese companies create the dynamics of innovation. Oxford University Press.

Oberlaender, M., De Kock, C. P. J., Bruno, R. M., Ramirez, A., Meyer, H. S., Dercksen, V. J., Helmstaedter, M., & Sakmann, B. (2012). Cell Type–Specific Three-Dimensional Structure of Thalamocortical Circuits in a Column of Rat Vibrissal Cortex. Cerebral Cortex22(10), 2375–2391. https://doi.org/10.1093/cercor/bhr317

Olfati-Saber, R., Fax, J. A., & Murray, R. M. (2007). Consensus and Cooperation in Networked Multi-Agent Systems. Proceedings of the IEEE95(1), 215–233. https://doi.org/10.1109/JPROC.2006.887293

Olshausen, B., Anderson, C., & Van Essen, D. (1993). A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. The Journal of Neuroscience13(11), 4700–4719. https://doi.org/10.1523/JNEUROSCI.13-11-04700.1993

O’Neil, C. (2016). Weapons of math destruction: How big data increases inequality and threatens democracy (First edition). Crown.

Paivio, A. (1990). Mental representations: A dual coding approach. Clarendon Press.

Panofsky, E. (1939). Studies in Iconology: Humanistic Themes In the Art of the Renaissance (1. Aufl.). Routledge. https://doi.org/10.4324/9780429497063

Papacharissi, Z. (2014). Affective Publics: Sentiment, Technology, and Politics. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199999736.001.0001

Pariser, E. (2012). The filter bubble: What the Internet is hiding from you. Penguin books.

Pavlov, I. P. (2010). Conditioned reflexes: An investigation of the physiological activity of the cerebral cortex. Annals of neurosciences17(3). https://doi.org/10.5214/ans.0972-7531.1017309

Pazaitis, A., De Filippi, P., & Kostakis, V. (2017). Blockchain and value systems in the sharing economy: The illustrative case of Backfeed. Technological Forecasting and Social Change125, 105–115. https://doi.org/10.1016/j.techfore.2017.05.025

Pearson, J., Naselaris, T., Holmes, E. A., & Kosslyn, S. M. (2015). Mental Imagery: Functional Mechanisms and Clinical Applications. Trends in Cognitive Sciences19(10), 590–602. https://doi.org/10.1016/j.tics.2015.08.003

Pelaprat, E., & Cole, M. (2011). “Minding the Gap”: Imagination, Creativity and Human Cognition. Integrative Psychological and Behavioral Science45(4), 397–418. https://doi.org/10.1007/s12124-011-9176-5

Penrose, R., & Gardner, M. (2016). The emperor’s new mind: Concerning computers, minds and the laws of physics(Revised impression). Oxford University Press.

Pentland, A. (2014). Social Physics: How good ideas spread — the lessons from a new science. Scribe Publications.

Persky, J. (1995). The Ethology of Homo Economicus. Journal of Economic Perspectives9(2), 221–231. https://doi.org/10.1257/jep.9.2.221

Piaget, J. (1952). The origins of intelligence in children. (S. 419). W W Norton & Co. https://doi.org/10.1037/11494-000

Picard, R. W. (2000). Affective computing (1. paperback ed). MIT Press.

Pikovsky, A., Rosenblum, M., & Kurths, J. (2001). Synchronization: A Universal Concept in Nonlinear Sciences (1. Aufl.). Cambridge University Press. https://doi.org/10.1017/CBO9780511755743

Pinch, T., & Bijsterveld, K. (Hrsg.). (2012). The Oxford handbook of sound studies. Oxford University Press.

Polak, F., Polak, F. L., Boulding, E., Boulding, E., Polak, F., & Polak, F. (1973). The image of the future. Elsevier Scientific Publ. Comp.

Prigogine, I., & Stengers, I. (1984). Order out of chaos: Man’s new dialogue with nature (5. [print.]). Bantam Books.

Pylyshyn, Z. W. (2002). Mental imagery: In search of a theory. Behavioral and Brain Sciences25(2), 157–182. https://doi.org/10.1017/S0140525X02000043

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., & Sutskever, I. (2021). Learning Transferable Visual Models From Natural Language Supervision(Version 1). arXiv. https://doi.org/10.48550/ARXIV.2103.00020

Rahwan, I., Cebrian, M., Obradovich, N., Bongard, J., Bonnefon, J.-F., Breazeal, C., Crandall, J. W., Christakis, N. A., Couzin, I. D., Jackson, M. O., Jennings, N. R., Kamar, E., Kloumann, I. M., Larochelle, H., Lazer, D., McElreath, R., Mislove, A., Parkes, D. C., Pentland, A. ‘Sandy’, … Wellman, M. (2019). Machine behaviour. Nature568(7753), 477–486. https://doi.org/10.1038/s41586-019-1138-y

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M. (2022). Hierarchical Text-Conditional Image Generation with CLIP Latents (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2204.06125

Ramseyer, F., & Tschacher, W. (2011). Nonverbal synchrony in psychotherapy: Coordinated body movement reflects relationship quality and outcome. Journal of Consulting and Clinical Psychology79(3), 284–295. https://doi.org/10.1037/a0023419

Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience2(1), 79–87. https://doi.org/10.1038/4580

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2015). You Only Look Once: Unified, Real-Time Object Detection(Version 5). arXiv. https://doi.org/10.48550/ARXIV.1506.02640

Reindl, V., Gerloff, C., Scharke, W., & Konrad, K. (2018). Brain-to-brain synchrony in parent-child dyads and the relationship with emotion regulation revealed by fNIRS-based hyperscanning. NeuroImage178, 493–502. https://doi.org/10.1016/j.neuroimage.2018.05.060

Reynolds, R. (1994). An Introduction to Cultural Algorithms.

Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to Recommender Systems Handbook. In F. Ricci, L. Rokach, B. Shapira, & P. B. Kantor (Hrsg.), Recommender Systems Handbook (S. 1–35). Springer US. https://doi.org/10.1007/978-0-387-85820-3_1

Richland, L. E., Chan, T.-K., Morrison, R. G., & Au, T. K.-F. (2010). Young children’s analogical reasoning across cultures: Similarities and differences. Journal of Experimental Child Psychology105(1–2), 146–153. https://doi.org/10.1016/j.jecp.2009.08.003

Riedl, M., Müller, A., & Wessel, N. (2013). Practical considerations of permutation entropy: A tutorial review. The European Physical Journal Special Topics222(2), 249–262. https://doi.org/10.1140/epjst/e2013-01862-7

Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience27, 169–192. https://doi.org/10.1146/annurev.neuro.27.070203.144230

Robertson, L. C. (2003). Binding, spatial attention and perceptual awareness. Nature Reviews Neuroscience4(2), 93–102. https://doi.org/10.1038/nrn1030

Roenneberg, T., Kantermann, T., Juda, M., Vetter, C., & Allebrandt, K. V. (2013). Light and the human circadian clock. Handbook of Experimental Pharmacology217, 311–331. https://doi.org/10.1007/978-3-642-25950-0_13

Rosa, H. (2016). Resonanz: Eine Soziologie der Weltbeziehung (1. Auflage). Suhrkamp.

Rough, J. (2002). Society’s Breakthrough! Releasing essential wisdom and virtue in all people. AuthorHouse.

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence1(5), 206–215. https://doi.org/10.1038/s42256-019-0048-x

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature323(6088), 533–536. https://doi.org/10.1038/323533a0

Russell, S. J. (2019). Human compatible: Artificial intelligence and the problem of control. Viking.

Russell, S. J., & Norvig, P. (2021). Artificial intelligence: A modern approach (Fourth edition). Pearson.

Saenz, M. J., Revilla, E., & Simón, C. (2020). Designing AI Systems With Human-Machine Teams. MIT Sloan Management Reviewhttps://sloanreview.mit.edu/article/designing-ai-systems-with-human-machine-teams/

Sartre, J.-P., & Elkaïm-Sartre, A. (2004). The imaginary: A phenomenological psychology of the imagination. Routledge.

Sawyer, R. K. (2005). Social Emergence: Societies As Complex Systems (1. Aufl.). Cambridge University Press. https://doi.org/10.1017/CBO9780511734892

Schacter, D. L., Addis, D. R., & Buckner, R. L. (2007). Remembering the past to imagine the future: The prospective brain. Nature Reviews Neuroscience8(9), 657–661. https://doi.org/10.1038/nrn2213

Schafer, R. M. (1993). The soundscape: Our sonic environment and the tuning of the world. Destiny Books ; Distributed to the book trade in the United States by American International Distribution Corp.

Schilbach, L., Timmermans, B., Reddy, V., Costall, A., Bente, G., Schlicht, T., & Vogeley, K. (2013). Toward a second-person neuroscience. Behavioral and Brain Sciences36(4), 393–414. https://doi.org/10.1017/S0140525X12000660

Schuman, C. D., Potok, T. E., Patton, R. M., Birdwell, J. D., Dean, M. E., Rose, G. S., & Plank, J. S. (2017). A Survey of Neuromorphic Computing and Neural Networks in Hardware (Version 1). arXiv. https://doi.org/10.48550/ARXIV.1705.06963

Schwartz, P. (1991). The Art of the Long View. Doubleday/Currency.

Sclove, R. (1995). Democracy and technology. Guilford Press.

Searle, J. R. (1983). Intentionality: An Essay in the Philosophy of Mind (1. Aufl.). Cambridge University Press. https://doi.org/10.1017/CBO9781139173452

Seligman, M. E. P., Railton, P., Baumeister, R. F., & Sripada, C. (2013). Navigating Into the Future or Driven by the Past. Perspectives on Psychological Science: A Journal of the Association for Psychological Science8(2), 119–141. https://doi.org/10.1177/1745691612474317

Shanken, E. A. (2005). Artists in Industry and the Academy: Collaborative Research, Interdisciplinary Scholarship and the Creation and Interpretation of Hybrid Forms. Leonardo38(5), 415–418. https://doi.org/10.1162/leon.2005.38.5.415

Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Shepard, R. N., & Metzler, J. (1971). Mental Rotation of Three-Dimensional Objects. Science171(3972), 701–703. https://doi.org/10.1126/science.171.3972.701

Shevlin, H. (2018). To build conscious machines, focus on general intelligence: A framework for the assessment of consciousness in biological and artificial systemshttps://doi.org/10.17863/CAM.40234

Shiogai, Y., Stefanovska, A., & McClintock, P. V. E. (2010). Nonlinear dynamics of cardiovascular ageing. Physics Reports488(2–3), 51–110. https://doi.org/10.1016/j.physrep.2009.12.003

Shneiderman, B. (2020). Human-Centered Artificial Intelligence: Reliable, Safe & Trustworthy. International Journal of Human–Computer Interaction36(6), 495–504. https://doi.org/10.1080/10447318.2020.1741118

Siegel, E. (2016). Predictive analytics: The power to predict who will click, buy, lie, or die (Revised and updated edition). Wiley.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. Nature529(7587), 484–489. https://doi.org/10.1038/nature16961

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., & Hassabis, D. (2017). Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm (arXiv:1712.01815). arXiv. http://arxiv.org/abs/1712.01815

Singer, T., & Klimecki, O. M. (2014). Empathy and compassion. Current Biology24(18), R875–R878. https://doi.org/10.1016/j.cub.2014.06.054

Singer, W. (1999). Neuronal Synchrony: A Versatile Code for the Definition of Relations? Neuron24(1), 49–65. https://doi.org/10.1016/S0896-6273(00)80821-1

Singer, W., & Gray, C. M. (1995). Visual Feature Integration and the Temporal Correlation Hypothesis. Annual Review of Neuroscience18(1), 555–586. https://doi.org/10.1146/annurev.ne.18.030195.003011

Sivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods. Journal of Business Research70, 263–286. https://doi.org/10.1016/j.jbusres.2016.08.001

Skinner, B. F. (1965). Science and human behavior (First Free Press Paperback Edition). The Free Press.

Sorace, C. (2014). China’s Last Communist: Ai Weiwei. Critical Inquiry40(2), 396–419. https://doi.org/10.1086/674120

Spearman, C. (1904). „General Intelligence,“ Objectively Determined and Measured. The American Journal of Psychology15(2), 201. https://doi.org/10.2307/1412107

Spence, C., & Deroy, O. (2013). How automatic are crossmodal correspondences? Consciousness and Cognition22(1), 245–260. https://doi.org/10.1016/j.concog.2012.12.006

Spinoza, B. de, Shirley, S., & Feldman, S. (1992). The ethics ; Treatise on the emendation of the intellect ; Selected letters(2nd ed). Hackett Pub. Co.

Spiro, R. J., Feltovich, P. J., Coulson, R. L., & Anderson, D. K. (1989). Multiple analogies for complex concepts: Antidotes for analogy-induced misconception in advanced knowledge acquisition. In S. Vosniadou & A. Ortony (Hrsg.), Similarity and Analogical Reasoning (1. Aufl., S. 498–531). Cambridge University Press. https://doi.org/10.1017/CBO9780511529863.023

Sporns, O. (2011). Networks of the brain. Massachusetts institute of technology.

Sporns, O., Tononi, G., & Kötter, R. (2005). The Human Connectome: A Structural Description of the Human Brain. PLoS Computational Biology1(4), e42. https://doi.org/10.1371/journal.pcbi.0010042

Squire, L. R. (2004). Memory systems of the brain: A brief history and current perspective. Neurobiology of Learning and Memory82(3), 171–177. https://doi.org/10.1016/j.nlm.2004.06.005

Stanciu, D. (2023). Consciousness, 4E cognition and Aristotle: A few conceptual and historical aspects. Frontiers in Computational Neuroscience17, 1204602. https://doi.org/10.3389/fncom.2023.1204602

Steels, L., & Brooks, R. (Hrsg.). (2018). The artificial life route to artificial intelligence: Building embodied, situated agents. Routledge, Taylor & Francis Group.

Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. MIT Press.

Stephens, G. J., Silbert, L. J., & Hasson, U. (2010). Speaker–listener neural coupling underlies successful communication. Proceedings of the National Academy of Sciences107(32), 14425–14430. https://doi.org/10.1073/pnas.1008662107

Sternberg, R. J. (1985). Beyond IQ: A triarchic theory of human intelligence. Cambridge University Press.

Sternberg, R. J., Conway, B. E., Ketron, J. L., & Bernstein, M. (1981). People’s conceptions of intelligence. Journal of Personality and Social Psychology41(1), 37–55. https://doi.org/10.1037/0022-3514.41.1.37

Stone, P., Brooks, R., Brynjolfsson, E., Calo, R., Etzioni, O., Hager, G., Hirschberg, J., Kalyanakrishnan, S., Kamar, E., Kraus, S., Leyton-Brown, K., Parkes, D., Press, W., Saxenian, A., Shah, J., Tambe, M., & Teller, A. (2022). Artificial Intelligence and Life in 2030: The One Hundred Year Study on Artificial Intelligence (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2211.06318

Streltsov, A., Adesso, G., & Plenio, M. B. (2017). Colloquium: Quantum coherence as a resource. Reviews of Modern Physics89(4), 041003. https://doi.org/10.1103/RevModPhys.89.041003

Strogatz, S. (1994). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering(Second edition, first issued in hardback). CRC Press.

Strogatz, S. (2003). Sync: How order emerges from chaos in the universe, nature, and daily life (1. paperback ed). Hyperion.

Suchman, L. (2006). Human-Machine Reconfigurations: Plans and Situated Actions (2. Aufl.). Cambridge University Press. https://doi.org/10.1017/CBO9780511808418

Suddendorf, T., & Corballis, M. C. (2007). The evolution of foresight: What is mental time travel, and is it unique to humans? Behavioral and Brain Sciences30(3), 299–313. https://doi.org/10.1017/S0140525X07001975

Sunstein, C. R. (2002). Republic.com (3. print., and 1. paperback print. with a new afterword). Princeton University Press.

Sunstein, C. R. (2017). #Republic: Divided democracy in the age of social media. Princeton University Press.

Surowiecki, J. (2005). The wisdom of crowds (Nachdr.). Anchor Books.

Taves, A. (2009). Religious experience reconsidered: A building-block approach to the study of religion and other special things (Second printing, and first paperback printing). Princeton University Press.

Tegmark, M. (2017). Life 3.0: Being human in the age of artificial intelligence. Allen Lane.

Thelen, E., & Smith, L. B. (2002). A dynamic systems approach to the development of cognition and action (5. print). MIT Press.

Thompson, E., & Stapleton, M. (2009). Making Sense of Sense-Making: Reflections on Enactive and Extended Mind Theories. Topoi28(1), 23–30. https://doi.org/10.1007/s11245-008-9043-2

Tomasello, M., Carpenter, M., Call, J., Behne, T., & Moll, H. (2005). Understanding and sharing intentions: The origins of cultural cognition. Behavioral and Brain Sciences28(5), 675–691. https://doi.org/10.1017/S0140525X05000129

Tomkins, S. S. (1992). Affect, imagery, consciousness, Vol. 1: The positive affects. Springer Publishing Co. https://doi.org/10.1037/14351-000

Tononi, G. (2004). An information integration theory of consciousness. BMC Neuroscience5(1), 42. https://doi.org/10.1186/1471-2202-5-42

Tononi, G., Boly, M., Massimini, M., & Koch, C. (2016). Integrated information theory: From consciousness to its physical substrate. Nature Reviews Neuroscience17(7), 450–461. https://doi.org/10.1038/nrn.2016.44

Tononi, G., Sporns, O., & Edelman, G. M. (1994). A measure for brain complexity: Relating functional segregation and integration in the nervous system. Proceedings of the National Academy of Sciences91(11), 5033–5037. https://doi.org/10.1073/pnas.91.11.5033

Treisman, A. (1996). The binding problem. Current Opinion in Neurobiology6(2), 171–178. https://doi.org/10.1016/S0959-4388(96)80070-5

Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology12(1), 97–136. https://doi.org/10.1016/0010-0285(80)90005-5

Tuckman, B. W. (1965). Developmental sequence in small groups. Psychological Bulletin63(6), 384–399. https://doi.org/10.1037/h0022100

Turkle, S. (2011). Alone together: Why we expect more from technology and less from each other. Basic Books.

United Nations. (2015, 2024). Transforming our world: The 2030 Agenda for Sustainable Development | Department of Economic and Social Affairshttps://sdgs.un.org/2030agenda

Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind: Cognitive science and human experience (14. print.). MIT Press.

Varela, F., Lachaux, J.-P., Rodriguez, E., & Martinerie, J. (2001). The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience2(4), 229–239. https://doi.org/10.1038/35067550

Vinge, V. (1993, Dezember 1). The coming technological singularity: How to survive in the post-human erahttps://ntrs.nasa.gov/citations/19940022856

Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 20011, I-511-I–518. https://doi.org/10.1109/CVPR.2001.990517

Voinov, A., Kolagani, N., McCall, M. K., Glynn, P. D., Kragt, M. E., Ostermann, F. O., Pierce, S. A., & Ramu, P. (2016). Modelling with stakeholders: Next generation. Environmental Modelling & Software77, 196–220. https://doi.org/10.1016/j.envsoft.2015.11.016

Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science359(6380), 1146–1151. https://doi.org/10.1126/science.aap9559

Vygotskij, L. S., & Cole, M. (1981). Mind in society: The development of higher psychological processes (Nachdr.). Harvard Univ. Press.

Wandell, B. A., Dumoulin, S. O., & Brewer, A. A. (2007). Visual Field Maps in Human Cortex. Neuron56(2), 366–383. https://doi.org/10.1016/j.neuron.2007.10.012

Ward, T. B. (1994). Structured Imagination: The Role of Category Structure in Exemplar Generation. Cognitive Psychology27(1), 1–40. https://doi.org/10.1006/cogp.1994.1010

Watson, J. B. (1913). Psychology as the behaviorist views it. Psychological Review20(2), 158–177. https://doi.org/10.1037/h0074428

Waytz, A., & Mitchell, J. P. (2011). Two Mechanisms for Simulating Other Minds: Dissociations Between Mirroring and Self-Projection. Current Directions in Psychological Science20(3), 197–200. https://doi.org/10.1177/0963721411409007

Weick, K. E., & Sutcliffe, K. M. (2006). Mindfulness and the quality of organizational attention. Organization Science17(4), 514–524. https://doi.org/10.1287/orsc.1060.0196

Whitehouse, H. (2004). Modes of religiosity: A cognitive theory of religious transmission. AltaMira Press.

Wilson, H. J., & Daugherty, P. R. (2018). Human + machine: Reimagining work in the age of AI. Harvard Business Review Press.

Wimsatt, W. C. (2006). Reductionism and its heuristics: Making methodological reductionism honest. Synthese151(3), 445–475. https://doi.org/10.1007/s11229-006-9017-0

Wimsatt, W. C. (2007). Re-engineering philosophy for limited beings: Piecewise approximations to reality. Harvard University Press.

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical Neurophysiology113(6), 767–791. https://doi.org/10.1016/S1388-2457(02)00057-3

Wooldridge, M. J. (2009). An introduction to multiagent systems (2nd ed). John Wiley & Sons.

Wu, H.-K., Lee, S. W.-Y., Chang, H.-Y., & Liang, J.-C. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & Education62, 41–49. https://doi.org/10.1016/j.compedu.2012.10.024

Yampolskiy, R. V. (2016). Artificial superintelligence: A futuristic approach. CRC Press.

Yang, Q., Liu, Y., Chen, T., & Tong, Y. (2019). Federated Machine Learning: Concept and Applications. ACM Trans. Intell. Syst. Technol.10(2), 12:1-12:19. https://doi.org/10.1145/3298981

Zeiler, M. D., & Fergus, R. (2014). Visualizing and Understanding Convolutional Networks. In D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Hrsg.), Computer Vision – ECCV 2014 (Bd. 8689, S. 818–833). Springer International Publishing. https://doi.org/10.1007/978-3-319-10590-1_53

Zeman, A., Dewar, M., & Della Sala, S. (2015). Lives without imagery – Congenital aphantasia. Cortex73, 378–380. https://doi.org/10.1016/j.cortex.2015.05.019

Zhang, J., & Norvilitis, J. M. (2002). Measuring Chinese Psychological Well-Being With Western Developed Instruments. Journal of Personality Assessment79(3), 492–511. https://doi.org/10.1207/S15327752JPA7903_06

Žižek, S. (2016). Lacan: Eine Einführung (K. Genschow & A. Roesler, Übers.; 5. Auflage, Deutsche Erstausgabe). FISCHER Taschenbuch.

Zuboff, S. (2019). The age of surveillance capitalism: The fight for a human future at the new frontier of power (First edition). PublicAffairs.

Zuiderveen Borgesius, F. J., Trilling, D., Möller, J., Bodó, B., De Vreese, C. H., & Helberger, N. (2016). Should we worry about filter bubbles? Internet Policy Review5(1). https://doi.org/10.14763/2016.1.401

Zylinska, J. (2020). AI Art: Machine Visions and Warped Dreams (First edition). Open Humanities Press.

Diese Seiten sind kopiergeschützt. Für Reproduktionsanfragen kontaktieren Sie bitte den Autor.